Patents by Inventor Troy E Jackson

Troy E Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11318314
    Abstract: A method and device apparatus to deliver a pacing therapy capable of remodeling a patient's heart over a period of time that includes monitoring one or more parameters in response to a delivered cardiac remodeling pacing, determining whether the cardiac remodeling pacing has an effect on cardiac normalization in response to the monitoring, and adjusting the cardiac remodeling pacing in response to the determined effect on cardiac normalization. The method and device may also perform short-term monitoring of one or more parameters in response to the delivered cardiac remodeling pacing, monitor one or more long-term parameter indicative of a long-term effect of the delivered cardiac remodeling pacing, determine the long-term effect of the delivered cardiac remodeling pacing on cardiac normalization in response to the monitoring, and adjust the cardiac remodeling pacing in response to one or both of the short-term monitoring and the determined long-term effect on cardiac normalization.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 3, 2022
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Teresa A. Whitman, Troy E. Jackson
  • Patent number: 11285312
    Abstract: Systems and methods are described herein for evaluation and adjustment of a left ventricular assist device (LVAD). The systems and methods may utilize at least a plurality of external electrodes to monitor cardiac electrical activity before and during LVAD therapy. The cardiac electrical activity as well as other information such cardiac sound information may be used to determine and adjust one or more LVAD output parameters such as pump speed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 29, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey M. Gillberg, Subham Ghosh, Michael F. Hess, Troy E. Jackson
  • Publication number: 20220032067
    Abstract: A method for heart failure management includes monitoring one or more sensor-based parameters for a patient to determine a pacing therapy. If the one or more parameters indicate atrial tachycardia or atrial fibrillation, a first pacing therapy is delivered. If the one or more parameters do not indicate atrial tachycardia or atrial fibrillation, it is determined whether the patient is asleep. If the patient is asleep, a second pacing therapy is delivered. If the one or more parameters do not indicate atrial tachycardia, atrial fibrillation, or that the patient is asleep, the patient's P-wave duration is evaluated with respect to a P-wave duration threshold value. When the patient's P-wave duration is determined to exceed the P-wave duration threshold value, a third pacing therapy is delivered, and when the patient's P-wave duration is determined to not exceed the P-wave duration threshold value, a fourth pacing therapy is delivered.
    Type: Application
    Filed: June 29, 2021
    Publication date: February 3, 2022
    Inventors: Lilian Kornet, Troy E. Jackson
  • Publication number: 20210299444
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Publication number: 20210275809
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) system receives a cardiac electrical signal by an electrical sensing circuit via an extra-cardiovascular sensing electrode vector and senses cardiac events from the cardiac electrical signal. The ICD system detects tachycardia from the cardiac electrical signal and determines a tachycardia cycle length from the cardiac electrical signal. The ICD system determines an ATP interval based on the tachycardia cycle length and sets an extended ATP interval that is longer than the ATP interval. The ICD delivers ATP pulses to a patient's heart via an extra-cardiovascular pacing electrode vector different than the sensing electrode vector. The ATP pulses include a leading ATP pulse delivered at the extended ATP interval after a cardiac event is sensed from the cardiac electrical signal and a second ATP pulse delivered at the ATP interval following the leading ATP pulse.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 9, 2021
    Inventor: Troy E. Jackson
  • Publication number: 20210236818
    Abstract: A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Publication number: 20210196132
    Abstract: A method includes determining that a patient has heart failure with preserved ejection fraction (HFpEF); configuring a cardiovascular (CV) model using patient characterization data; determining one or more therapy parameters using output data of the CV model; and administering HFpEF therapy based on the one or more therapy parameters.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 1, 2021
    Inventors: Jeffrey M. Gillberg, Troy E. Jackson, Richard Cornelussen
  • Patent number: 11033743
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC. (CVG)
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Patent number: 11033745
    Abstract: A pacemaker is configured to deliver pacing pulses that lead pacing pulses delivered by another medical device. The pacemaker may detect pacing pulses delivered by the other medical device by a pulse detector circuit of the pacemaker, produce a pulse detect signal in response to each one of the detected pacing pulses, determine a pulse detect interval between two pulse detect signals consecutively produced by the pulse detector circuit, set a pacing escape interval based on the pulse detect interval less a pre-interval, and deliver a pacing pulse upon expiration of the pacing escape interval.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: June 15, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jonathan D. Edmonson, Troy E. Jackson, Robert W. Stadler
  • Patent number: 11027132
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) system receives a cardiac electrical signal by an electrical sensing circuit via an extra-cardiovascular sensing electrode vector and senses cardiac events from the cardiac electrical signal. The ICD system detects tachycardia from the cardiac electrical signal and determines a tachycardia cycle length from the cardiac electrical signal. The ICD system determines an ATP interval based on the tachycardia cycle length and sets an extended ATP interval that is longer than the ATP interval. The ICD delivers ATP pulses to a patient's heart via an extra-cardiovascular pacing electrode vector different than the sensing electrode vector. The ATP pulses include a leading ATP pulse delivered at the extended ATP interval after a cardiac event is sensed from the cardiac electrical signal and a second ATP pulse delivered at the ATP interval following the leading ATP pulse.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventor: Troy E. Jackson
  • Publication number: 20210138243
    Abstract: A medical device is configured to determine time intervals between consecutive cardiac events sensed from a cardiac electrical signal, increase a value of a tachyarrhythmia interval count in response to each of the determine time intervals detected as a tachyarrhythmia interval. The device is further configured to detect normal sinus rhythm events and the decrease the value of the tachyarrhythmia interval count in response to a threshold number of detected normal sinus rhythm events.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 13, 2021
    Inventors: Xusheng Zhang, Kevin L. Dehmer, Saul Greenhut, Troy E. Jackson, Yuanzhen Liu
  • Patent number: 10981009
    Abstract: A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 20, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Troy E. Jackson, Vincent P. Ganion
  • Publication number: 20210106837
    Abstract: An implantable medical device includes an electrically conductive first housing, a conductive feedthrough extending through the first housing, electronic circuitry positioned within the first housing, a device electrode, and a second housing. The electronic circuitry is electrically coupled to the first housing and the feedthrough, and senses electrical signals of a patient and/or delivers electrical stimulation therapy to the patient via the first housing and the feedthrough. The device electrode is configured to electrically connect with tissue and/or a fluid at a target site in the patient. A lead connector is configured to connect to a proximal end of an implantable medical lead. The lead connector includes a first connector contact electrically coupled to the feedthrough and a second connector contact electrically coupled to the first housing.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 15, 2021
    Inventors: Andrew J. Ries, Wade M. Demmer, Troy E. Jackson
  • Publication number: 20200298003
    Abstract: An implantable medical device system is configured to detect a tachyarrhythmia from a cardiac electrical signal and start an ATP therapy delay period. The implantable medical device determines whether the cardiac electrical signal received during the ATP therapy delay period satisfies ATP delivery criteria. A therapy delivery module is controlled to cancel the delayed ATP therapy if the ATP delivery criteria are not met and deliver the delayed ATP therapy if the ATP delivery criteria are met.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Xusheng ZHANG, Yanina GRINBERG, Paul R. SOLHEIM, Troy E. JACKSON, Timothy A. EBELING, Vladimir P. NIKOLSKI
  • Patent number: 10675471
    Abstract: An implantable medical device system is configured to detect a tachyarrhythmia from a cardiac electrical signal and start an ATP therapy delay period. The implantable medical device determines whether the cardiac electrical signal received during the ATP therapy delay period satisfies ATP delivery criteria. A therapy delivery module is controlled to cancel the delayed ATP therapy if the ATP delivery criteria are not met and deliver the delayed ATP therapy if the ATP delivery criteria are met.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 9, 2020
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Yanina Grinberg, Paul R. Solheim, Troy E. Jackson, Timothy A. Ebeling, Vladimir P. Nikolski
  • Publication number: 20200129771
    Abstract: A pacemaker is configured to deliver pacing pulses that lead pacing pulses delivered by another medical device. The pacemaker may detect pacing pulses delivered by the other medical device by a pulse detector circuit of the pacemaker, produce a pulse detect signal in response to each one of the detected pacing pulses, determine a pulse detect interval between two pulse detect signals consecutively produced by the pulse detector circuit, set a pacing escape interval based on the pulse detect interval less a pre-interval, and deliver a pacing pulse upon expiration of the pacing escape interval.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Jonathan D. EDMONSON, Troy E. JACKSON, Robert W. STADLER
  • Publication number: 20190381322
    Abstract: A method and device apparatus to deliver a pacing therapy capable of remodeling a patient's heart over a period of time that includes monitoring one or more parameters in response to a delivered cardiac remodeling pacing, determining whether the cardiac remodeling pacing has an effect on cardiac normalization in response to the monitoring, and adjusting the cardiac remodeling pacing in response to the determined effect on cardiac normalization. The method and device may also perform short-term monitoring of one or more parameters in response to the delivered cardiac remodeling pacing, monitor one or more long-term parameter indicative of a long-term effect of the delivered cardiac remodeling pacing, determine the long-term effect of the delivered cardiac remodeling pacing on cardiac normalization in response to the monitoring, and adjust the cardiac remodeling pacing in response to one or both of the short-term monitoring and the determined long-term effect on cardiac normalization.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Vinod Sharma, Teresa A. Whitman, Troy E. Jackson
  • Publication number: 20190298903
    Abstract: Systems and methods are described herein for evaluation and adjustment of a left ventricular assist device (LVAD). The systems and methods may utilize at least a plurality of external electrodes to monitor cardiac electrical activity before and during LVAD therapy. The cardiac electrical activity as well as other information such cardiac sound information may be used to determine and adjust one or more LVAD output parameters such as pump speed.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Inventors: Jeffrey M. Gillberg, Subham Ghosh, Michael F. Hess, Troy E. Jackson
  • Publication number: 20190247673
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Publication number: 20190167994
    Abstract: A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Troy E. Jackson, Vincent P. Ganion