Patents by Inventor Tsai-Fu Hsiao

Tsai-Fu Hsiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220181143
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Application
    Filed: February 3, 2022
    Publication date: June 9, 2022
    Inventors: Tsai-Fu HSIAO, Kuang-Yuan HSU, Pei-Ren JENG, Tze-Liang LEE
  • Patent number: 11244822
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsai-Fu Hsiao, Kuang-Yuan Hsu, Pei-Ren Jeng, Tze-Liang Lee
  • Publication number: 20170110312
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Tsai-Fu HSIAO, Kuang-Yuan HSU, Pei-Ren JENG, Tze-Liang LEE
  • Patent number: 9607826
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9502305
    Abstract: A CMOS transistor and a method for manufacturing the same are disclosed. A semiconductor substrate having at least a PMOS transistor and an NMOS transistor is provided. The source/drain of the PMOS transistor comprises SiGe epitaxial layer. A carbon implantation process is performed to form a carbon-doped layer in the top portion of the source/drain of the PMOS transistor. A silicide layer is formed on the source/drain. A CESL is formed on the PMOS transistor and the NMOS transistor. The formation of the carbon-doped layer is capable of preventing Ge out-diffusion.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: November 22, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Wei Chen, Teng-Chun Tsai, Chien-Chung Huang, Jei-Ming Chen, Tsai-Fu Hsiao
  • Patent number: 9228260
    Abstract: A wafer processing chamber is provided, including a first processing gas supply unit and a second processing gas supply unit. The first processing gas supply unit is configured for supplying a first processing gas to form a first processing zone in the wafer processing chamber. The second processing gas supply unit is configured for supplying a second processing gas into the wafer processing chamber to form a second processing zone in the wafer processing chamber. In the wafer processing chamber, the first processing zone and the second processing zone are virtually separated from each other, such that a process wafer in the first processing zone may be performed a different process from another process wafer in the second processing zone at the same time. Further, a heat treatment apparatus and a method for processing wafers also provide herein.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 5, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsai-Fu Hsiao, Chun-Yao Wang, Tai-Chun Huang, Tze-Liang Lee
  • Publication number: 20150221504
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sung, Clement Hsingjen Wann
  • Patent number: 9006802
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20140038374
    Abstract: A CMOS transistor and a method for manufacturing the same are disclosed. A semiconductor substrate having at least a PMOS transistor and an NMOS transistor is provided. The source/drain of the PMOS transistor comprises SiGe epitaxial layer. A carbon implantation process is performed to form a carbon-doped layer in the top portion of the source/drain of the PMOS transistor. A silicide layer is formed on the source/drain. A CESL is formed on the PMOS transistor and the NMOS transistor. The formation of the carbon-doped layer is capable of preventing Ge out-diffusion.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 6, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Wei Chen, Teng-Chun Tsai, Chien-Chung Huang, Jei-Ming Chen, Tsai-Fu Hsiao
  • Publication number: 20130043512
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20120202328
    Abstract: The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
    Type: Application
    Filed: April 19, 2012
    Publication date: August 9, 2012
    Inventors: Tsuo-Wen Lu, Tsai-Fu Hsiao, Yu-Ren Wang, Shu-Yen Chan
  • Patent number: 8183118
    Abstract: The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 22, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Tsuo-Wen Lu, Tsai-Fu Hsiao, Yu-Ren Wang, Shu-Yen Chan
  • Publication number: 20120068268
    Abstract: A method of fabricating a transistor structure includes the step of providing a substrate having a gate thereon. Then, a first spacer is formed at two sides of the gate. After that, an LDD region is formed in the substrate at two sides of the gate. Later, a second spacer comprising a carbon-containing spacer and a sacrificing spacer is formed on the first spacer. Subsequently, a source/drain region is formed in the substrate at two sides of the gate. Finally, the sacrificing spacer is removed entirely, and part of the carbon-containing spacer is also removed. The remaining carbon-containing spacer has an L shape. The carbon-containing spacer has a first carbon concentration, and the sacrificing spacer has a second carbon concentration. The first carbon concentration is greater than the second carbon concentration.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Inventors: Tsai-Fu Hsiao, Tsuo-Wen Lu, Yu-Ren Wang
  • Publication number: 20120052644
    Abstract: The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Tsuo-Wen Lu, Tsai-Fu Hsiao, Yu-Ren Wang, Shu-Yen Chan
  • Patent number: 8076210
    Abstract: A method for fabricating a metal-oxide semiconductor transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; and performing a first ion implantation process to implant a first molecular cluster having carbon, boron, and hydrogen into the semiconductor substrate at two sides of the gate structure for forming a doped region, wherein the molecular weight of the first molecular cluster is greater than 100.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 13, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Tsai-Fu Hsiao, Ching-I Li, Po-Yuan Chen, Chun-An Lin, Hsiang-Ying Wang, Chao-Chun Chen, Chin-Cheng Chien
  • Patent number: 8053847
    Abstract: A method for fabricating a metal-oxide semiconductor transistor is disclosed. First, a semiconductor substrate having a gate structure thereon is provided, and a spacer is formed around the gate structure. An ion implantation process is performed to implant a molecular cluster containing carbon, boron, and hydrogen into the semiconductor substrate at two sides of the spacer for forming a doped region. The molecular weight of the molecular cluster is preferably greater than 100. Thereafter, a millisecond annealing process is performed to activate the molecular cluster within the doped region.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: November 8, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Tsai-Fu Hsiao, Ching-I Li, Po-Yuan Chen, Chun-An Lin, Hsiang-Ying Wang, Chao-Chun Chen, Chin-Cheng Chien
  • Publication number: 20110159658
    Abstract: A method for fabricating a metal-oxide semiconductor transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; and performing a first ion implantation process to implant a first molecular cluster having carbon, boron, and hydrogen into the semiconductor substrate at two sides of the gate structure for forming a doped region, wherein the molecular weight of the first molecular cluster is greater than 100.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Inventors: Tsai-Fu Hsiao, Ching-I Li, Po-Yuan Chen, Chun-An Lin, Hsiang-Ying Wang, Chao-Chun Chen, Chin-Cheng Chien
  • Patent number: 7927954
    Abstract: A method for fabricating strained-silicon transistors is disclosed. First, a semiconductor substrate is provided and a gate structure and a spacer surrounding the gate structure are disposed on the semiconductor substrate. A source/drain region is then formed in the semiconductor substrate around the spacer, and a first rapid thermal annealing process is performed to activate the dopants within the source/drain region. An etching process is performed to form a recess around the gate structure and a selective epitaxial growth process is performed to form an epitaxial layer in the recess. A second rapid thermal annealing process is performed to redefine the distribution of the dopants within the source/drain region and repair the damaged bonds of the dopants.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 19, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Li-Shian Jeng, Kun-Hsien Lee, Wen-Han Hung, Tzyy-Ming Cheng, Meng-Yi Wu, Tsai-Fu Hsiao, Shu-Yen Chan
  • Patent number: 7892935
    Abstract: A semiconductor process is provided. The semiconductor process includes providing a substrate. Then, a surface treatment is performed to the substrate to form a buffer layer on the substrate. Next, a first pre-amorphous implantation is performed to the substrate.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chao-Ching Hsieh, Tsai-Fu Hsiao, Yu-Lan Chang, Tsung-Yu Hung, Chun-Chieh Chang
  • Patent number: 7795101
    Abstract: A method of forming a MOS transistor, in which, a co-implantation is performed to implant a carbon co-implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect, and the carbon co-implant is from a precursor comprising CO or CO2.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 14, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Hsiang-Ying Wang, Chin-Cheng Chien, Tsai-Fu Hsiao, Ming-Yen Chien, Chao-Chun Chen