Patents by Inventor Tsung-Lin Lee

Tsung-Lin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12205499
    Abstract: An electronic device includes a panel and a support structure. The panel has a first portion and a second portion. The first portion is rollable. The support structure supports the panel and has a first area and a second area. The first area corresponds to the first portion and the second area corresponds to the second portion. The support structure includes a plurality of first openings in the first area.
    Type: Grant
    Filed: October 4, 2023
    Date of Patent: January 21, 2025
    Assignee: InnoLux Corporation
    Inventors: Yuan-Lin Wu, Tsung-Han Tsai, Kuan-Feng Lee
  • Patent number: 12199169
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a plurality of nanostructures over a substrate, and a gate electrode surrounding the nanostructures. The semiconductor device structure includes a source/drain portion adjacent to the gate electrode, and a semiconductor layer between the gate electrode and the source/drain portion.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: January 14, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching Cheng, Wei-Sheng Yun, Shao-Ming Yu, Tsung-Lin Lee, Chih-Chieh Yeh
  • Publication number: 20240387706
    Abstract: A semiconductor device includes semiconductor nanostructures disposed over a substrate, and an electrical isolation region comprising a void disposed over the substrate in a drain/source region. The semiconductor device further includes a source/drain epitaxial layer in contact with the semiconductor nanostructures and disposed over the electrical isolation region in the drain/source region. The source/drain epitaxial layer is disposed over the void. The semiconductor device further includes a gate dielectric layer disposed on and wrapped around each channel region of the semiconductor nanostructures, and a gate electrode layer disposed on the gate dielectric layer and wrapped around each channel region of the semiconductor nanostructures.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin LEE, Da-Wen LIN, Chih Chieh YEH
  • Publication number: 20240387650
    Abstract: Methods for fabricating a bipolar junction transistor (BJT) are provided. A method includes forming a collector region, forming base regions over the collector region, and forming emitter regions over the base regions. The method further includes forming base dielectric layers over the collector region and on opposite sides of the base regions, forming base conductive layers over the base dielectric layers and on the opposite sides of the base regions, and forming base contacts over the base conductive layers. The top surface of the collector region is coplanar with bottom surfaces of the base regions and bottom surfaces of the base dielectric layers. The base contacts are divided into a first group of base contacts disposed between the base regions and a second group of base contacts disposed between the base regions and the STI region.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuan-Jung CHEN, Chun-Ming LIN, Tsung-Lin LEE, Shiuan-Jeng LIN, Hung-Lin CHEN
  • Publication number: 20240379678
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a number of channel members over a substrate, a gate structure wrapping around each of the number of channel members, a dielectric fin structure disposed adjacent to the gate structure, the dielectric fin structure includes a first dielectric layer disposed over the substrate and in direct contact with the first gate structure, a second dielectric layer disposed over the first dielectric layer, and a third dielectric layer. The third dielectric is disposed over the second dielectric layer and spaced apart from the first dielectric layer and the gate structure by the second dielectric layer. The dielectric fin structure also includes an isolation feature disposed directly over the third dielectric layer.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Ming-Shuan Li, Tsung-Lin Lee, Chih Chieh Yeh
  • Publication number: 20240379802
    Abstract: A first gate-all-around (GAA) transistor is formed on the first fin structure; the first GAA transistor has a channel region within a first plurality of nanostructures. A second GAA transistor is formed on the second fin structure; the second GAA transistor has a second channel region configuration. The second GAA transistor has a channel region within a second plurality of nanostructures. The second plurality of nanostructures is less than the first plurality of nanostructures.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Tsung-Lin Lee, Choh Fei Yeap, Da-Wen Lin, Chih Yeh
  • Publication number: 20240379381
    Abstract: A semiconductor device is provided. The semiconductor device has a fin structure that protrudes vertically upwards. A lateral dimension of the fin structure is reduced. A semiconductor layer is formed on the fin structure after the reducing of the lateral dimension. An annealing process is performed to the semiconductor device after the forming of the semiconductor layer. A dielectric layer is formed over the fin structure after the performing of the annealing process.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Po-Kang Ho
  • Patent number: 12142490
    Abstract: A semiconductor device is provided. The semiconductor device has a fin structure that protrudes vertically upwards. A lateral dimension of the fin structure is reduced. A semiconductor layer is formed on the fin structure after the reducing of the lateral dimension. An annealing process is performed to the semiconductor device after the forming of the semiconductor layer. A dielectric layer is formed over the fin structure after the performing of the annealing process.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: November 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Po-Kang Ho
  • Publication number: 20240371881
    Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.
    Type: Application
    Filed: July 10, 2024
    Publication date: November 7, 2024
    Inventors: Kuan-Jung CHEN, Tsung-Lin LEE, Chung-Ming LIN, Wen-Chih CHIANG, Cheng-Hung WANG
  • Publication number: 20240363495
    Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.
    Type: Application
    Filed: July 9, 2024
    Publication date: October 31, 2024
    Inventors: Kuan-Jung CHEN, Cheng-Hung WANG, Tsung-Lin LEE, Shiuan-Jeng LIN, Chun-Ming LIN, Wen-Chih CHIANG
  • Publication number: 20240347627
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate, where the fin includes an epitaxial layer stack having a plurality of semiconductor channel layers interposed by a plurality of dummy layers. In some embodiments, the method further includes removing a portion of the epitaxial layer stack within a source/drain region of the semiconductor device to form a trench in the source/drain region that exposes lateral surfaces of the plurality of semiconductor channel layers and the plurality of dummy layers. After forming the trench, in some examples, the method further includes performing a dummy layer recess process to laterally etch ends of the plurality of dummy layers to form first recesses along a sidewall of the trench. In some embodiments, the method further includes conformally forming a cap layer along the exposed lateral surfaces of the plurality of semiconductor channel layers and within the first recesses.
    Type: Application
    Filed: June 26, 2024
    Publication date: October 17, 2024
    Inventors: Tsung-Lin LEE, Choh Fei YEAP, Da-Wen LIN, Chih-Chieh YEH
  • Publication number: 20240347616
    Abstract: A semiconductor structure includes a first device and a second device. The first device includes: a first gate structure formed over an active region and a first air spacer disposed adjacent to the first gate structure. The second device includes: a second gate structure formed over an isolation structure and a second air spacer disposed adjacent to the second gate structure. The first air spacer and the second air spacer have different sizes.
    Type: Application
    Filed: May 13, 2024
    Publication date: October 17, 2024
    Inventors: Yi-Hsiu Liu, Feng-Cheng Yang, Tsung-Lin Lee, Wei-Yang Lee, Yen-Ming Chen, Yen-Ting Chen
  • Publication number: 20240321767
    Abstract: The reflectance of a low-reflectance alignment mark is increased by coating the alignment mark with a high-reflectance film layer. This improves the strength of the light signal and reduces variation in the light signal.
    Type: Application
    Filed: June 7, 2024
    Publication date: September 26, 2024
    Inventors: Tzu-Hao Yeh, Kuan-Jung Chen, Tsung-Lin Lee, Shiuan-Jeng Lin, Hung-Lin Chen
  • Patent number: 12074169
    Abstract: Structures and methods for trench isolation are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, a buried layer arranged over the insulation layer, and a trench extending downward from an upper surface of the buried layer and terminating in the handle layer. The dielectric layer is located on a bottom surface of the trench and contacting the handle layer. The polysilicon region is located in the trench and contacting the dielectric layer.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: August 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuan-Jung Chen, Tsung-Lin Lee, Chung-Ming Lin, Wen-Chih Chiang, Cheng-Hung Wang
  • Patent number: 12068227
    Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: August 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
  • Patent number: 12062709
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: May 31, 2023
    Date of Patent: August 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 12040383
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate, where the fin includes an epitaxial layer stack having a plurality of semiconductor channel layers interposed by a plurality of dummy layers. In some embodiments, the method further includes removing a portion of the epitaxial layer stack within a source/drain region of the semiconductor device to form a trench in the source/drain region that exposes lateral surfaces of the plurality of semiconductor channel layers and the plurality of dummy layers. After forming the trench, in some examples, the method further includes performing a dummy layer recess process to laterally etch ends of the plurality of dummy layers to form first recesses along a sidewall of the trench. In some embodiments, the method further includes conformally forming a cap layer along the exposed lateral surfaces of the plurality of semiconductor channel layers and within the first recesses.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Choh Fei Yeap, Da-Wen Lin, Chih-Chieh Yeh
  • Patent number: 12033951
    Abstract: The reflectance of a low-reflectance alignment mark is increased by coating the alignment mark with a high-reflectance film layer. This improves the strength of the light signal and reduces variation in the light signal.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: July 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Hao Yeh, Kuan-Jung Chen, Tsung-Lin Lee, Shiuan-Jeng Lin, Hung-Lin Chen
  • Publication number: 20240222197
    Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.
    Type: Application
    Filed: March 19, 2024
    Publication date: July 4, 2024
    Inventors: Cheng-Hung WANG, Tsung-Lin LEE, Wen-Chih CHIANG, Kuan-Jung CHEN
  • Patent number: 12020988
    Abstract: A fin field effect transistor (FinFET) device structure with dummy fin structures and method for forming the same are provided. The FinFET device structure includes an isolation structure over a substrate, and a first fin structure extended above the isolation structure. The fin field effect transistor (FinFET) device structure includes a second fin structure adjacent to the first fin structure, and a material layer formed over the fin structure. The material layer and the isolation structure are made of different materials, the material layer has a top surface with a top width and a bottom surface with a bottom width, and the bottom width is greater than the top width.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: June 25, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Chih-Chieh Yeh