Patents by Inventor Tsung-Lin Lee

Tsung-Lin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220359416
    Abstract: The reflectance of a low-reflectance alignment mark is increased by coating the alignment mark with a high-reflectance film layer. This improves the strength of the light signal and reduces variation in the light signal.
    Type: Application
    Filed: August 17, 2021
    Publication date: November 10, 2022
    Inventors: Tzu-Hao Yeh, Kuan-Jung Chen, Tsung-Lin Lee, Shiuan-Jeng Lin, Hung-Lin Chen
  • Publication number: 20220352320
    Abstract: Various strained channel transistors are disclosed herein. An exemplary semiconductor device includes a substrate and a fin structure disposed over the substrate. The fin structure includes a first epitaxial layer disposed on the substrate, a second epitaxial layer disposed on the first epitaxial layer, and a third epitaxial layer disposed on the second epitaxial layer. The second epitaxial layer includes a relaxed transversal stress component and a longitudinal compressive stress component, and the third epitaxial layer has uni-axial strain. A gate structure is disposed on a channel region of the fin structure, such that the gate structure interposes a source region and a drain region of the fin structure.
    Type: Application
    Filed: July 7, 2022
    Publication date: November 3, 2022
    Inventors: MARK VAN DAL, GERBEN DOORNBOS, GEORGIOS VELLIANITIS, TSUNG-LIN LEE, FENG YUAN
  • Publication number: 20220285346
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a number of channel members over a substrate, a gate structure wrapping around each of the number of channel members, a dielectric fin structure disposed adjacent to the gate structure, the dielectric fin structure includes a first dielectric layer disposed over the substrate and in direct contact with the first gate structure, a second dielectric layer disposed over the first dielectric layer, and a third dielectric layer. The third dielectric is disposed over the second dielectric layer and spaced apart from the first dielectric layer and the gate structure by the second dielectric layer. The dielectric fin structure also includes an isolation feature disposed directly over the third dielectric layer.
    Type: Application
    Filed: September 2, 2021
    Publication date: September 8, 2022
    Inventors: Ming-Shuan Li, Tsung-Lin Lee, Chih Chieh Yeh
  • Publication number: 20220285533
    Abstract: A method of fabricating a device includes providing a fin extending from a substrate, where the fin includes an epitaxial layer stack having a plurality of semiconductor channel layers interposed by a plurality of dummy layers. In some embodiments, the method further includes removing a portion of the epitaxial layer stack within a source/drain region of the semiconductor device to form a trench in the source/drain region that exposes lateral surfaces of the plurality of semiconductor channel layers and the plurality of dummy layers. After forming the trench, in some examples, the method further includes performing a dummy layer recess process to laterally etch ends of the plurality of dummy layers to form first recesses along a sidewall of the trench. In some embodiments, the method further includes conformally forming a cap layer along the exposed lateral surfaces of the plurality of semiconductor channel layers and within the first recesses.
    Type: Application
    Filed: September 2, 2021
    Publication date: September 8, 2022
    Inventors: Tsung-Lin LEE, Choh Fei YEAP, Da-Wen LIN, Chih-Chieh YEH
  • Patent number: 11437372
    Abstract: A semiconductor device includes a fin structure over a substrate. The fin structure includes a bottom portion and a top portion. The bottom and the top portions have different materials. The device also includes a liner layer on a sidewall of the bottom portion, a dielectric layer on side surfaces of the liner layer, an interfacial layer, and a gate structure over the dielectric layer and engages the fin structure. A top surface of the liner layer extends below a bottom surface of the top portion. The interfacial layer has a first section on and directly contacting sidewall surfaces of the bottom portion and a second section on and directly contacting top and sidewall surfaces of the top portion. The gate structure includes a high-k dielectric layer and a metal gate electrode over the high-k dielectric layer. The high-k dielectric layer directly contacts the first section of the interfacial layer.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Chieh Hsiao, Johnson Chen, Tzung-Yi Tsai, Tsung-Lin Lee, Yen-Ming Chen
  • Patent number: 11411107
    Abstract: The present disclosure provides one embodiment of a method making semiconductor structure. The method includes forming a composite stress layer on a semiconductor substrate, wherein the forming of the composite stress layer includes forming a first stress layer of a dielectric material with a first compressive stress and forming a second stress layer of the dielectric material with a second compressive stress on the first stress layer, the second compressive stress being greater than the first compressive stress; and patterning the semiconductor substrate to form fin active regions using the composite stress layer as an etch mask.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Jen Lai, Yen-Ming Chen, Tsung-Lin Lee
  • Publication number: 20220238350
    Abstract: A semiconductor device is provided. The semiconductor device has a fin structure that protrudes vertically upwards. A lateral dimension of the fin structure is reduced. A semiconductor layer is formed on the fin structure after the reducing of the lateral dimension. An annealing process is performed to the semiconductor device after the forming of the semiconductor layer. A dielectric layer is formed over the fin structure after the performing of the annealing process.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Po-Kang Ho
  • Publication number: 20220238678
    Abstract: Methods include providing a first fin structure and a second fin structure each extending from a substrate. A first gate-all-around (GAA) transistor is formed on the first fin structure; the first GAA transistor has a channel region within a first plurality of nanostructures. A second GAA transistor is formed on the second fin structure; the second GAA transistor has a second channel region configuration. The second GAA transistor has a channel region within a second plurality of nanostructures. The second plurality of nanostructures is less than the first plurality of nanostructures.
    Type: Application
    Filed: September 2, 2021
    Publication date: July 28, 2022
    Inventors: Tsung-Lin LEE, Choh Fei YEAP, Da-Wen LIN, Chih Yeh
  • Publication number: 20220173245
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Application
    Filed: February 14, 2022
    Publication date: June 2, 2022
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Patent number: 11302535
    Abstract: A semiconductor device is provided. The semiconductor device has a fin structure that protrudes vertically upwards. A lateral dimension of the fin structure is reduced. A semiconductor layer is formed on the fin structure after the reducing of the lateral dimension. An annealing process is performed to the semiconductor device after the forming of the semiconductor layer. A dielectric layer is formed over the fin structure after the performing of the annealing process.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Po-Kang Ho
  • Publication number: 20220084887
    Abstract: Disclosed is a method for forming a crystalline protective polysilicon layer which does not create defective voids during subsequent processes so as to provide effective protection to devices underneath. In one embodiment, a method for forming a semiconductor device, includes: depositing a protective coating on a first polysilicon layer; forming an epitaxial layer on the protective coating; and depositing a second polysilicon layer over the epitaxial layer, wherein the protective coating comprises a third polysilicon layer, wherein the third polysilicon layer is deposited at a first temperature in a range of 600-700 degree Celsius, and wherein the third polysilicon layer in the protect coating is configured to protect the first polysilicon layer when the second polysilicon layer is etched.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Cheng-Hung WANG, Tsung-Lin Lee, Wen-Chih Chiang, Kuan-Jung Chen
  • Patent number: 11251303
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: February 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Publication number: 20210366767
    Abstract: Different isolation liners for different type FinFETs and associated isolation feature fabrication are disclosed herein. An exemplary method includes performing a fin etching process on a substrate to form first trenches defining first fins in a first region and second trenches defining second fins in a second region. An oxide liner is formed over the first fins in the first region and the second fins in the second region. A nitride liner is formed over the oxide liner in the first region and the second region. After removing the nitride liner from the first region, an isolation material is formed over the oxide liner and the nitride liner to fill the first trenches and the second trenches. The isolation material, the oxide liner, and the nitride liner are recessed to form first isolation features (isolation material and oxide liner) and second isolation features (isolation material, nitride liner, and oxide liner).
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Tzung-Yi Tsai, Tsung-Lin Lee, Yen-Ming Chen
  • Publication number: 20210351277
    Abstract: A semiconductor device includes a substrate. A gate structure is disposed over the substrate in a vertical direction. The gate structure extends in a first horizontal direction. An air spacer is disposed adjacent to a first portion of the gate structure in a second horizontal direction that is different from the first horizontal direction. The air spacer has a vertical boundary in a cross-sectional side view defined by the vertical direction and the first horizontal direction.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 11, 2021
    Inventors: Chih-Hsin Yang, Yen-Ming Chen, Feng-Cheng Yang, Tsung-Lin Lee, Wei-Yang Lee, Dian-Han Chen
  • Patent number: 11158725
    Abstract: The fin structure includes a first portion and a second, lower portion separated at a transition. The first portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Hung-Ming Chen, Tsung-Lin Lee, Chang-Yun Chang, Clement Hsingjen Wann
  • Patent number: 11158742
    Abstract: A semiconductor device includes a fin field effect transistor (FinFET). The FinFET includes a channel disposed on a fin, a gate disposed over the channel and a source and drain. The channel includes at least two pairs of a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer. The first semiconductor layer has a different lattice constant than the second semiconductor layer. A thickness of the first semiconductor layer is three to ten times a thickness of the second semiconductor layer at least in one pair.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Chih Chieh Yeh, Cheng-Hsien Wu, Hung-Li Chiang, Jung-Piao Chiu, Tzu-Chiang Chen, Tsung-Lin Lee, Yu-Lin Yang, I-Sheng Chen
  • Patent number: 11152362
    Abstract: A fin field effect transistor (FinFET) device structure and method for forming the same are provided. The FinFET device structure includes a fin structure extending above a substrate, and the fin structure has a first portion and a second portion below the first portion, and the first portion and the second portion are made of different materials. The FinFET device structure includes an isolation structure formed on the substrate, and an interface between the first portion and the second portion of the fin structure is above a top surface of the isolation structure. The FinFET device structure includes a liner layer formed on sidewalls of the second portion of the fin structure.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Wang, Zheng-Yang Pan, Yi-Min Huang, Shih-Chieh Chang, Tsung-Lin Lee
  • Patent number: 11127740
    Abstract: In a method of forming a semiconductor device including a fin field effect transistor (FinFET), a sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. A mask pattern is formed over the sacrificial layer. The sacrificial layer and the source/drain structure are patterned by using the mask pattern as an etching mask, thereby forming openings adjacent to the patterned sacrificial layer and source/drain structure. A dielectric layer is formed in the openings. After the dielectric layer is formed, the patterned sacrificial layer is removed to form a contact opening over the patterned source/drain structure. A conductive layer is formed in the contact opening.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tung Ying Lee, Meng-Hsuan Hsiao, Tsung-Lin Lee, Chih Chieh Yeh, Yee-Chia Yeo
  • Publication number: 20210287963
    Abstract: Structures and methods for reducing process charging damages are disclosed. In one example, a silicon-on-insulator (SOI) structure is disclosed. The SOI structure includes: a substrate, a polysilicon region and an etch stop layer. The substrate includes: a handle layer, an insulation layer arranged over the handle layer, and a buried layer arranged over the insulation layer. The polysilicon region extends downward from an upper surface of the buried layer and terminates in the handle layer. The etch stop layer is located on the substrate. The etch stop layer is in contact with both the substrate and the polysilicon region.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventors: Kuan-Jung Chen, Cheng-Hung Wang, Tsung-Lin Lee, Shiuan-Jeng Lin, Chun-Ming Lin, Wen-Chih Chiang
  • Publication number: 20210280471
    Abstract: An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 9, 2021
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Hung-Li Chiang, Wei-Jen Lai