Patents by Inventor Tsung-Min Hsieh

Tsung-Min Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9321635
    Abstract: A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: April 26, 2016
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 9314176
    Abstract: An apparatus and a method for processing signal are provided. The signal processing apparatus comprises an input interface and a processing unit. The input interface receives smoothing parameters and a to-be-separated signal. The processing unit establishes an upper extreme envelope and a lower extreme envelope of the to-be-separated signal, and calculates a mean envelope between the upper extreme envelope and the lower extreme envelope. The processing unit performs smoothing according to the smoothing parameters and the mean envelope to generate a smoothed mean envelope, and determines a trend component or a non-trend component according to the smoothed mean envelope.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 19, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sun-Hua Pao, Chieh-Neng Young, Tsung-Min Hsieh, Yio-Wha Shau
  • Patent number: 9271087
    Abstract: A MEMS microphone package device includes a MEMS microphone chip as an integrated circuit chip. An acoustic sensing structure is embedded in the integrated circuit chip. An adhesive structure adheres on outer sidewall of the microphone chip. A bottom portion of the adhesive structure protrudes out from first surface of the microphone chip and adheres on a surface of a substrate, having interconnection structure, to form a first seal ring. A space between the acoustic sensing structure and the substrate and sealed by the first seal ring forms a second chamber. A cover adheres to top portion of the adhesive structure, covering over the cavity on the second surface of the microphone chip. The top portion of the adhesive structure forms as a second seal ring. A space between the cover and the second surface of the microphone chip and sealed by the second seal ring forms a first chamber.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: February 23, 2016
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Chih-Hsien Chung, Yong-Wei Chen, Jhyy-Cheng Liou
  • Publication number: 20150315013
    Abstract: A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection.
    Type: Application
    Filed: July 11, 2014
    Publication date: November 5, 2015
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Cheng-Wei Tsai, Jhyy-Cheng Liou
  • Patent number: 9126827
    Abstract: A method for fabricating MEMS device includes providing a silicon substrate. A structural dielectric layer is formed over a first side of the silicon substrate. Structure elements are embedded in the structural dielectric layer. The structure elements include a conductive backplate disposed over the silicon substrate, having venting holes and protrusion structures on top of the conductive backplate; and diaphragm located above the conductive backplate by a distance. A chamber is formed between the diaphragm and the conductive backplate. A cavity is formed in the silicon substrate at a second side. The cavity corresponds to the structure elements. An isotropic etching is performed on a dielectric material of the structural dielectric layer to release the structure elements. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate. A second side of the diaphragm is exposed to an environment space.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 8, 2015
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Publication number: 20150147841
    Abstract: A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
    Type: Application
    Filed: November 28, 2013
    Publication date: May 28, 2015
    Applicant: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Publication number: 20150132880
    Abstract: A method for fabricating MEMS device includes providing a silicon substrate. A structural dielectric layer is formed over a first side of the silicon substrate. Structure elements are embedded in the structural dielectric layer. The structure elements include a conductive backplate disposed over the silicon substrate, having venting holes and protrusion structures on top of the conductive backplate; and diaphragm located above the conductive backplate by a distance. A chamber is formed between the diaphragm and the conductive backplate. A cavity is formed in the silicon substrate at a second side. The cavity corresponds to the structure elements. An isotropic etching is performed on a dielectric material of the structural dielectric layer to release the structure elements. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate. A second side of the diaphragm is exposed to an environment space.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8987842
    Abstract: A MEMS device includes a silicon substrate and a structural dielectric layer. The silicon substrate has a cavity. The structural dielectric layer is disposed on the silicon substrate. The structural dielectric layer has a space above the cavity of the silicon substrate and holds a plurality of structure elements within the space, including: a conductive backplate, over the silicon substrate, having a plurality of venting holes and a plurality of protrusion structures on top of the conductive backplate; and a diaphragm, located above the conductive backplate by a distance, wherein a chamber is formed between the diaphragm and the conductive backplate, and is connected to the cavity of the silicon substrate through the venting holes. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate and a second side of the diaphragm is exposed to an environment space.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 24, 2015
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8934649
    Abstract: A MEMS device includes substrate having a cavity. A dielectric layer is disposed on a second side of substrate at periphery of the cavity. A backplate structure is formed with the dielectric layer on a first side of the substrate and exposed by the cavity. The backplate structure includes at least a first backplate and a second backplate. The first backplate and the second backplate are electric disconnected and have venting holes to connect the cavity and the chamber. A diaphragm is disposed above the backplate structure by a distance, so as to form a chamber between the backplate structure and the diaphragm. A periphery of the diaphragm is embedded in the dielectric layer. The diaphragm serves as a common electrode. The first backplate and the second backplate respectively serve as a first electrode unit and a second electrode unit in conjugation with the diaphragm to form separate two capacitors.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Solid State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh, Jhyy-Cheng Liou
  • Publication number: 20140187880
    Abstract: A method for measuring a physiological signal is provided. The method is applicable to optical physiological measurement with at least two types of light sources. The method includes a processing for adjusting amplitudes of signals of the at least two types of light sources to a predetermined ratio by adjusting intensities of the light sources, so as to increase a signal dynamic range as well as a signal-to-noise ratio.
    Type: Application
    Filed: October 10, 2013
    Publication date: July 3, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tsung-Min Hsieh, Chen-Liang Lin, Jun-Chao Zhao, Hung-Sen Tsao
  • Publication number: 20140077317
    Abstract: A MEMS device includes a silicon substrate and a structural dielectric layer. The silicon substrate has a cavity. The structural dielectric layer is disposed on the silicon substrate. The structural dielectric layer has a space above the cavity of the silicon substrate and holds a plurality of structure elements within the space, including: a conductive backplate, over the silicon substrate, having a plurality of venting holes and a plurality of protrusion structures on top of the conductive backplate; and a diaphragm, located above the conductive backplate by a distance, wherein a chamber is formed between the diaphragm and the conductive backplate, and is connected to the cavity of the silicon substrate through the venting holes. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate and a second side of the diaphragm is exposed to an environment space.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: SOLID STATE SYSTEM CO., LTD.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8673732
    Abstract: Method is to fabricate a MEMS device with a substrate. The substrate has through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 18, 2014
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8606836
    Abstract: An apparatus and method for frequency division and filtering are provided. The apparatus includes a memory unit, an extrema calculation unit, and an envelope calculation unit. The memory unit is for storing sample data. The extrema calculation unit is for outputting and storing a number of maximum values and a number of minimum values to the memory unit according to the sample data. The envelope calculation unit is for calculating a mean envelope according to the maximum values and the minimum values, wherein within a duration when the envelope calculation unit respectively calculates an upper envelope and a lower envelope according to the maximum values and the minimum values, the envelope calculation unit outputs a value of the mean envelope to the memory unit according to a value of the upper envelope and a value of the lower envelope with respect to a corresponding identical address.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ting-Hsuan Chen, Gaung-Hui Gu, Ying-Chiang Hu, Tsung-Min Hsieh, Jun-Chao Zhao
  • Publication number: 20130260504
    Abstract: Method is to fabricate a MEMS device with a substrate. The substrate has through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8502329
    Abstract: A MEMS device includes a substrate. The substrate has a plurality of through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Patent number: 8464589
    Abstract: A MEMS structure includes a substrate, a structural dielectric layer, and a diaphragm. A structural dielectric layer is disposed over the substrate. The diaphragm is held by the structural dielectric layer at a peripheral end. The diaphragm includes multiple trench/ridge rings at a peripheral region surrounding a central region of the diaphragm. A corrugated structure is located at the central region of the diaphragm, surrounded by the trench/indent rings.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 18, 2013
    Assignee: Solid State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh, Li-Chi Tsao, Jhyy-Cheng Liou
  • Publication number: 20130056841
    Abstract: A MEMS device includes a substrate. The substrate has a plurality of through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: SOLID STATE SYSTEM CO., LTD.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Publication number: 20120310600
    Abstract: An apparatus and a method for processing signal are provided. The signal processing apparatus comprises an input interface and a processing unit. The input interface receives smoothing parameters and a to-be-separated signal. The processing unit establishes an upper extreme envelope and a lower extreme envelope of the to-be-separated signal, and calculates a mean envelope between the upper extreme envelope and the lower extreme envelope. The processing unit performs smoothing according to the smoothing parameters and the mean envelope to generate a smoothed mean envelope, and determines a trend component or a non-trend component according to the smoothed mean envelope.
    Type: Application
    Filed: April 19, 2012
    Publication date: December 6, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Sun-Hua Pao, Chieh-Neng Young, Tsung-Min Hsieh, Yio-Wha Shau
  • Patent number: 8258591
    Abstract: The present invention provides a MEMS device, be implemented on many MEMS device, such as MEMS microphone, MEMS speaker, MEMS accelerometer, MEMS gyroscope. The MEMS device includes a substrate. A dielectric structural layer is disposed over the substrate, wherein the dielectric structural layer has an opening to expose the substrate. A diaphragm layer is disposed over the dielectric structural layer, wherein the diaphragm layer covers the opening of the dielectric structural layer to form a chamber. A conductive electrode structure is adapted in the diaphragm layer and the substrate to store nonvolatile charges.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: September 4, 2012
    Assignee: Solid State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh
  • Patent number: 8217474
    Abstract: A hermetic microelectromechanical system (MEMS) package includes a CMOS MEMS chip and a second substrate. The CMOS MEMS Chip has a first substrate, a structural dielectric layer, a CMOS circuit and a MEMS structure. The structural dielectric layer is disposed on a first side of the first structural substrate. The structural dielectric layer has an interconnect structure for electrical interconnection and also has a protection structure layer. The first structural substrate has at least a hole. The hole is under the protection structure layer to form at least a chamber. The chamber is exposed to the environment in the second side of the first structural substrate. The chamber also comprises a MEMS structure. The second substrate is adhered to a second side of the first substrate over the chamber to form a hermetic space and the MEMS structure is within the space.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: July 10, 2012
    Assignee: Solid State System Co., Ltd.
    Inventors: Chien-Hsing Lee, Tsung-Min Hsieh, Jhyy-Cheng Liou