Patents by Inventor Tsung-Ming Tsai

Tsung-Ming Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9991629
    Abstract: Disclosed are a magnetic automobile vehicle device and its multifunctional module. The magnetic automobile vehicle device obtains electric power from a cigarette lighter slot of an automobile vehicle and includes a first magnet and an impact detector. The impact detector generates a distress signal when the automobile vehicle is collided. The multifunctional module includes a second magnet and an output element coupled to the magnetic automobile vehicle device by magnetic attraction and provided for charging or supplying power to the output element, and the output element has an ultrasonic transmitter, a USB slot or an O3 air purifier. Therefore, the device comes with a multifunctional configuration and meets market and consumer requirements.
    Type: Grant
    Filed: May 7, 2017
    Date of Patent: June 5, 2018
    Assignee: C.C.P. CONTACT PROBES CO., LTD.
    Inventors: Hao-Wen Chien, Li-Chun Lan, Min-An Ching, Ping-Huan Tsou, Wen-Ying Cheng, Bor-Chen Tsai, Tsung-Ming Tsai, Chih-Feng Chen
  • Patent number: 9935265
    Abstract: A resistive random access memory overcomes the low reliability of the conventional resistive random access memory. The resistive random access memory includes a resistance changing layer and two electrode layers. The two electrode layers are coupled with the resistance changing layer. Each of the two electrode layers includes a doping area containing a heavy element. In such an arrangement, the above deficiency can be overcome.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: April 3, 2018
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Hung Pan, Po-Hsun Chen
  • Publication number: 20180087171
    Abstract: An electrical connector electroplating process includes: performing a pre-treatment of an electrical connector to remove grease; performing an activation treatment of the electrical connector to activate an oxide film on a surface of the electrical connector; plating a layer of bottom coating on the surface of the electrical connector; plating a layer of silver film coating on a surface of the bottom coating; plating a layer of gold film coating on a surface of the silver film coating; plating a layer of platinum or rhodium film coating on a surface of the gold film coating; performing a post-treatment including surface pore sealing, water washing, and baking/drying of a surface of the platinum or rhodium film coating.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 29, 2018
    Inventors: Tsung-Ming Tsai, Yong-Ping Lee, Chen-Yu Chung, Tang-Hsing Ho
  • Patent number: 9853214
    Abstract: A resistive random access memory includes a first electrode, a separating medium, a resistance changing layer and a second electrode. The first electrode has a mounting face. The separating medium has a first face in contact with the mounting face, a second face opposite to the first face, and an inner face extending between the first and second faces. The separating medium forms a through hole extending from the first to second face. A part of the mounting face is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the mounting face as well as the inner and second faces. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: December 26, 2017
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170341050
    Abstract: The present disclosure provides a reaction method with homogeneous-phase supercritical fluid, including: preparing a supercritical fluid and a solute; supplying the supercritical fluid and the solute into a molecular sieve component to uniformly mix the supercritical fluid and the solute in the molecular sieve component, forming a homogeneous-phase supercritical fluid; and supplying the homogeneous-phase supercritical fluid into a reaction chamber for conducting a reaction.
    Type: Application
    Filed: October 12, 2016
    Publication date: November 30, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Cheng Shih, Chih-Hung Pan
  • Publication number: 20170346004
    Abstract: A resistive random access memory overcomes the low reliability of the conventional resistive random access memory. The resistive random access memory includes a resistance changing layer and two electrode layers. The two electrode layers are coupled with the resistance changing layer. Each of the two electrode layers includes a doping area containing a heavy element. In such an arrangement, the above deficiency can be overcome.
    Type: Application
    Filed: October 12, 2016
    Publication date: November 30, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Hung Pan, Po-Hsun Chen
  • Publication number: 20170317281
    Abstract: A resistive random access memory overcomes the low durability of the conventional resistive random access memory. The resistive random access memory includes a first electrode, a second electrode, an enclosing layer and an oxygen-containing resistance changing layer. The first and second electrodes are separate from each other. The enclosing layer forms a first via-hole. The oxygen-containing resistance changing layer is arranged for the first via-hole. The first and second electrodes and the enclosing layer jointly enclose the oxygen-containing resistance changing layer. Each of the first electrode, the second electrode and the enclosing layer is made of an element not containing oxygen.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 2, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Cheng Shih, Chih-Hung Pan
  • Publication number: 20170222143
    Abstract: A resistive random access memory is provided to solve the problem of low switching speed of the conventional resistive random access memory. The resistive random access memory may include a thermally conductive layer, a first electrode layer, a heat preserving element, a resistance changing layer and a second electrode layer. The first electrode layer is arranged on the thermally conductive layer. The heat preserving element is arranged on the first electrode layer and forms a through-hole. A part of a surface of the first electrode layer is exposed to the through-hole. The resistance changing layer extends from the part of the surface of the first electrode layer to a surface of the heat preserving element that is located outside the through-hole. The second electrode layer is arranged on the resistance changing layer.
    Type: Application
    Filed: May 17, 2016
    Publication date: August 3, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9711720
    Abstract: A resistive random access memory including a first electrode, a separating medium, a resistance changing layer and a second electrode is disclosed. The first electrode has a mounting face. The separating medium is arranged on the first electrode and forms a through hole. A part of the first electrode is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the first electrode as well as along an inner face and the second face of the separating medium. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer. In this arrangement, the problem of unstable forming voltage of the conventional resistive random access memory can be solved.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: July 18, 2017
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9685610
    Abstract: A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: June 20, 2017
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170117465
    Abstract: A resistive random access memory does not encounter the undesired effects caused by sneak current which occurs when a conventional resistive random access memory operates in an integrated circuit. The resistive random access memory includes a first electrode layer, a first insulating layer, an oxygen-containing layer, a second insulating layer and a second electrode layer. The first insulating layer is arranged on the first electrode layer. The oxygen-containing layer is arranged on the first insulating layer and includes an oxide doped with a metal element. The metal element does not exceed 10% of the oxygen-containing layer. The second insulating layer is arranged on the oxygen-containing layer, and the second electrode layer is arranged on the second insulating layer. In this arrangement, the undesired effects caused by sneak current can be effectively eliminated.
    Type: Application
    Filed: December 3, 2015
    Publication date: April 27, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Cheng Shih, Chih-Hung Pan
  • Publication number: 20170117466
    Abstract: A resistive random access memory overcomes the difficulty in reducing the forming voltage thereof. The resistive random access memory includes a first electrode layer, a separating portion, a lateral wall portion, an oxygen-containing rheostatic layer and a second electrode layer. The separating portion is arranged on the first electrode layer and forms a through-hole. The first electrode layer is exposed via the through-hole. The lateral wall portion is annularly arranged on an inner periphery of the separating portion defining the through-hole. The lateral wall portion is connected to the first electrode layer and includes a first dielectric. The oxygen-containing rheostatic layer covers the first electrode layer, the separating portion and the lateral wall portion. The oxygen-containing rheostatic layer includes a second dielectric smaller than the first dielectric. The second electrode layer is arranged on the oxygen-containing rheostatic layer.
    Type: Application
    Filed: December 3, 2015
    Publication date: April 27, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20170110658
    Abstract: A resistive random access memory includes a first electrode, a separating medium, a resistance changing layer and a second electrode. The first electrode has a mounting face. The separating medium has a first face in contact with the mounting face, a second face opposite to the first face, and an inner face extending between the first and second faces. The separating medium forms a through hole extending from the first to second face. A part of the mounting face is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the mounting face as well as the inner and second faces. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9620211
    Abstract: A maintaining device and a maintenance method for maintaining the normal operation of a resistive random access memory are disclosed. The maintenance method can be executed by the maintaining device. Said memory includes first and second electrodes. The first electrode is not grounded. The maintaining device is connected to the first electrode so that the first electrode receives an operational signal and a restoring signal generated by the maintaining device. The operational signal transits from a zero voltage to a non-zero voltage and then to the zero voltage. If the operational signal has already transited from the non-zero voltage to the zero voltage, the maintenance method controls the restoring signal to transit from the zero voltage to a negative voltage, controls the restoring signal to remain the negative voltage for a period of restoring time, and controls the restoring signal to transit from the negative voltage to the zero voltage.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: April 11, 2017
    Assignee: National Sun Yat-Sen University
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Yu-Ting Su, Chih-Hung Pan
  • Publication number: 20170025607
    Abstract: A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Patent number: 9502647
    Abstract: A resistive memory cell is disclosed. The resistive memory cell comprises a pair of electrodes and a resistance-switching network disposed between the pair of electrodes. The resistance-switching network comprises a group-IV element doping layer and a porous low-k layer. The group-IV doping layer comprises silicon oxide doped with a group-IV element. The porous low-k layer comprises porous silicon oxide or porous hafnium oxide. The group-IV element may comprise zirconium, titanium, or hafnium. The porous low-k layer may be prepared by inductively coupled plasma (ICP) treatment. A method of fabricating a resistive memory is disclosed. The method comprises forming a resistance-switching network on a first electrode using sputtering and forming a second electrode on the resistance-switching network using sputtering. The resistance-switching network comprises a group-IV element doping layer and a porous low-k layer.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Chih-Hung Pan, Ying-Lang Wang, Kei-Wei Chen, Shih-Chieh Chang, Te-Ming Kung
  • Patent number: 9496493
    Abstract: A resistive random access memory includes two electrode layers and a resistive switching layer mounted between the two electrode layers. The resistive switching layer consists essentially of insulating material with oxygen, metal material, and mobile ions. The polarity of the mobile ions is opposite to the polarity of oxygen ions. A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 15, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160240777
    Abstract: A resistive random access memory including a first electrode, a separating medium, a resistance changing layer and a second electrode is disclosed. The first electrode has a mounting face. The separating medium is arranged on the first electrode and forms a through hole. A part of the first electrode is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the first electrode as well as along an inner face and the second face of the separating medium. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer. In this arrangement, the problem of unstable forming voltage of the conventional resistive random access memory can be solved.
    Type: Application
    Filed: June 9, 2015
    Publication date: August 18, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160118579
    Abstract: A resistive random access memory includes two electrode layers and a resistive switching layer mounted between the two electrode layers. The resistive switching layer consists essentially of insulating material with oxygen, metal material, and mobile ions. The polarity of the mobile ions is opposite to the polarity of oxygen ions. A method for producing a resistive random access memory includes preparing a first metal layer and sputtering a resistive switching layer on the first metal layer. Surface treatment is conducted on the resistive switching layer by using a plasma containing mobile ions to dope the mobile ions into the resistive switching layer. The polarity of the mobile ions is opposite to the polarity of oxygen ions. Then, a second metal layer is sputtered on the resistive switching layer.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 28, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan
  • Publication number: 20160111640
    Abstract: A resistive random access memory including two electrode layers and a multi-resistance layer mounted between the two electrode layers. The multi-resistance layer consists essentially of insulating material with oxygen and lithium ions. The number of resistance states of a memory element can be increased by the resistive random access memory to increase the integration density of a memory module having a plurality of memory elements.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 21, 2016
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu, Chih-Hung Pan