Patents by Inventor Tsung-ting Tsai

Tsung-ting Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150592
    Abstract: Provided is a photocurable conductive black composition including: (a) at least one (meth)acrylate-functionalized urethane oligomer; (b) at least one photopolymerizable compound; (c) a photoinitiator; (d) a visible-light blocking system; (e) conductive fillers; and optionally (f) a thermal initiator. Also provided are a method for forming a cured product composed of the photocurable conductive black compositions, and an article comprising the cured product.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 9, 2024
    Inventors: Chien-Ho HUANG, Yi-Ting CHEN, Tsung-Han TSAI, Li-Yen LIN
  • Publication number: 20240128274
    Abstract: An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Inventors: Vasudha Gupta, Jae Won Choi, Shih Chang Chang, Tsung-Ting Tsai, Young Bae Park
  • Publication number: 20240129167
    Abstract: A communication receiver includes a first signal processing circuit and a second signal processing circuit. The first signal processing circuit includes a first feedforward equalizer and a decision circuit. The first feedforward equalizer processes a received signal to generate a first equalized signal. The decision circuit performs hard decision upon the first equalized signal to generate a first symbol decision signal. The second signal processing circuit includes a second feedforward equalizer, a decision feedforward equalizer, and a first decision feedback equalizer. The second feedforward equalizer processes the first equalized signal to generate a second equalized signal. The decision feedforward equalizer processes the first symbol decision signal to generate a third equalized signal. The first decision feedback equalizer generates a second symbol decision signal according to the second equalized signal and the third equalized signal.
    Type: Application
    Filed: September 18, 2023
    Publication date: April 18, 2024
    Applicant: MEDIATEK INC.
    Inventors: Chung-Hsien Tsai, Che-Yu Chiang, Yu-Ting Liu, Tsung-Lin Lee, Chia-Sheng Peng, Ting-Ming Yang
  • Patent number: 11950424
    Abstract: A semiconductor device and method of manufacturing the same are provided. The semiconductor device includes a substrate and a first gate electrode disposed on the substrate and located in a first region of the semiconductor device. The semiconductor device also includes a first sidewall structure covering the first gate electrode. The semiconductor device further includes a protective layer disposed between the first gate electrode and the first sidewall structure. In addition, the semiconductor device includes a second gate electrode disposed on the substrate and located in a second region of the semiconductor device. The semiconductor device also includes a second sidewall structure covering a lateral surface of the second gate electrode.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Ting Tsai, Ching-Tzer Weng, Tsung-Hua Yang, Kao-Chao Lin, Chi-Wei Ho, Chia-Ta Hsieh
  • Patent number: 11948896
    Abstract: A package structure is provided. The package structure includes a through substrate via structure, a first stacked die package structure, an underfill layer, and a package layer. The through substrate via structure is formed over a substrate. The first stacked die package structure is over the through substrate via structure, wherein the first stacked die package structure comprises a plurality of memory dies. The underfill layer is over the first stacked die package structure. the package layer is over the underfill layer, wherein the package layer has a protruding portion that extends below a top surface of the through substrate via structure.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Kung-Chen Yeh, I-Ting Huang, Shih-Ting Lin, Szu-Wei Lu
  • Publication number: 20240065057
    Abstract: A display may include pixels arranged in rows and columns in an active area and display driver circuitry in an inactive area. Data lines for the pixels may be positioned in the active area. Fanout lines may be routed through the active area. Each fanout line may electrically connect the display driver circuitry to a respective data line. One or more pixels may include a drive transistor and a light-emitting diode that are connected in series between a first power supply terminal and a second power supply terminal. A conductive layer may form a first terminal (such as the source terminal, the gate terminal, or the drain terminal) for the drive transistor. A conductive shielding layer may be interposed between the conductive layer and a fanout line to mitigate capacitive coupling between the terminal of the drive transistor and the fanout line.
    Type: Application
    Filed: June 2, 2023
    Publication date: February 22, 2024
    Inventors: Shin-Hung Yeh, Abbas Jamshidi Roudbari, Chien-Ya Lee, I-Cheng Shih, Shyuan Yang, Tsung-Ting Tsai
  • Patent number: 11895883
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 6, 2024
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20240023227
    Abstract: A circuit board comprises a substrate with opposite first and second sides. A pair of plated through holes (PTHs) extends along z-axis. A pair of signal traces are made on the first side of the substrate and electrically coupled to the pair of the PTHs respectively to form a differential pair. A ground metal is made on the second side of the substrate, the ground metal has a clearance made therein. The ground metal extends fully overlapping with the full signal traces to eliminate reflection noise caused by a boundary between the clearance and the metal ground.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 18, 2024
    Inventors: Ching-Shan CHANG, Kun-Tao TANG, Tsung-Ting TSAI, Chien-Lin CHEN
  • Patent number: 11877385
    Abstract: A circuit board comprises a substrate with opposite first and second sides. A pair of plated through holes (PTHs) extends along z-axis. A pair of signal traces are made on the first side of the substrate and electrically coupled to the pair of the PTHs respectively to form a differential pair. A ground metal is made on the second side of the substrate, the ground metal has a clearance made therein. The ground metal extends fully overlapping with the full signal traces to eliminate reflection noise caused by a boundary between the clearance and the metal ground.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: January 16, 2024
    Assignee: FIRST HI-TEC ENTERPRISE CO., LTD.
    Inventors: Ching-Shan Chang, Kun-Tao Tang, Tsung-Ting Tsai, Chien-Lin Chen
  • Patent number: 11854490
    Abstract: To reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels. This allows for the thin-film transistor sub-pixels to be grouped adjacent to the central area of the active area, leaving room along an edge of the active area to accommodate one or more additional display components such as gate driver circuitry or fanout portions of data lines.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Levent Erdal Aygun, Chin-Wei Lin, Yun Wang, Xin Lin, Aida R Colon-Berrios, Shih Chang Chang, Fan Gui, Mohammad Reza Esmaeili Rad, Ran Tu, Warren S Rieutort-Louis, Abbas Jamshidi Roudbari, Bhadrinarayana Lalgudi Visweswaran, Cheng-Chih Hsieh, Ricardo A Peterson, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Yuchi Che
  • Publication number: 20230389384
    Abstract: An electronic device may include a display having display pixels formed in an active area of the display. The display further includes display driver circuitry for driving gate lines that are routed across the display. A hole such as a through hole, optical window, or other inactive region may be formed within the active area of the display. Multiple gate lines carrying the same signal may be merged together prior to being routed around the hole to help minimize the routing line congestion around the border of the hole. Dummy circuits may be coupled to the merged segment portion to help increase the parasitic loading on the merged segments. The hole may have a tapered shape to help maximize the size of the active area. The hole may have an asymmetric shape to accommodate multiple sub-display sensor components.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Warren S. Rieutort-Louis, Abbas Jamshidi Roudbari, Yuchi Che, Tsung-Ting Tsai, Jiun-Jye Chang, Shih Chang Chang, Ting-Kuo Chang
  • Patent number: 11818912
    Abstract: A display may have organic light-emitting diode pixels formed from thin-film circuitry. The thin-film circuitry may be formed in thin-film transistor (TFT) layers and the organic light-emitting diodes may include anodes and cathodes and an organic emissive layer formed over the TFT layers between the anodes and cathodes. The organic emissive layer may be formed via chemical evaporation techniques. The display may include moisture blocking structures such as organic emissive layer disconnecting structures that introduce one or more gaps in the organic emissive layer during evaporation so that any potential moisture permeating path from the display panel edge to the active area of the display is completely terminated.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 14, 2023
    Assignee: Apple Inc.
    Inventors: Tsung-Ting Tsai, Abbas Jamshidi Roudbari, Chuan-Sheng Wei, HanChi Ting, Jae Won Choi, Jianhong Lin, Nai-Chih Kao, Shih Chang Chang, Shin-Hung Yeh, Takahide Ishii, Ting-Kuo Chang, Yu Hung Chen, Yu-Wen Liu, Yu-Chuan Pai, Andrew Lin
  • Publication number: 20230337467
    Abstract: An electronic device may include a display and an optical sensor formed underneath the display. The electronic device may include a plurality of transparent windows that overlap the optical sensor. The resolution of the display panel may be reduced in some areas due to the presence of the transparent windows. To mitigate diffraction artifacts, a first sensor (13-1) may sense light through a first pixel removal region having transparent windows arranged according to a first pattern. A second sensor (13-2) may sense light through a second pixel removal region having transparent windows arranged according to a second pattern that is different than the first pattern. The first and second patterns of the transparent windows may result in the first and second sensors having different diffraction artifacts. Therefore, an image from the first sensor may be corrected for diffraction artifacts based on an image from the second sensor.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 19, 2023
    Inventors: Yuchi Che, Abbas Jamshidi Roudbari, Jean-Pierre S. Guillou, Majid Esfandyarpour, Sebastian Knitter, Warren S. Rieutort-Louis, Tsung-Ting Tsai
  • Patent number: 11778874
    Abstract: An electronic device may include a display having display pixels formed in an active area of the display. The display further includes display driver circuitry for driving gate lines that are routed across the display. A hole such as a through hole, optical window, or other inactive region may be formed within the active area of the display. Multiple gate lines carrying the same signal may be merged together prior to being routed around the hole to help minimize the routing line congestion around the border of the hole. Dummy circuits may be coupled to the merged segment portion to help increase the parasitic loading on the merged segments. The hole may have a tapered shape to help maximize the size of the active area. The hole may have an asymmetric shape to accommodate multiple sub-display sensor components.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 3, 2023
    Assignee: Apple Inc.
    Inventors: Warren S. Rieutort-Louis, Abbas Jamshidi Roudbari, Yuchi Che, Tsung-Ting Tsai, Jiun-Jye Chang, Shih Chang Chang, Ting-Kuo Chang
  • Publication number: 20230284503
    Abstract: A display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap an optical sensor. Each high-transmittance area may be devoid of thin-film transistors and other display components. To improve transmission while maintaining satisfactory touch sensing performance, one or more segments of the touch sensor metal in the pixel removal region may have a reduced width relative to the touch sensor metal in the full pixel density region and/or one or more segments of the touch sensor metal in the pixel removal region may be omitted relative to the touch sensor metal in the full pixel density region. To mitigate a different appearance between the pixel removal region and the full pixel density region at off-axis viewing angles, the position of the touch sensor metal in the pixel removal region may be tuned.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 7, 2023
    Inventors: Ricardo A Peterson, Abbas Jamshidi Roudbari, Ashray Vinayak Gogte, Christophe Blondin, Sebastian Knitter, Warren S Rieutort-Louis, Yuchi Che, Yurii Morozov, Matthew D Hollands, Chuang Qian, Michael H Lim, Matthew J Schwendeman, Kenny Kim, Tsung-Ting Tsai, Yue Qu
  • Patent number: 11751462
    Abstract: A display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap an optical sensor. Each high-transmittance area may be devoid of thin-film transistors and other display components. To improve transmission while maintaining satisfactory touch sensing performance, one or more segments of the touch sensor metal in the pixel removal region may have a reduced width relative to the touch sensor metal in the full pixel density region and/or one or more segments of the touch sensor metal in the pixel removal region may be omitted relative to the touch sensor metal in the full pixel density region. To mitigate a different appearance between the pixel removal region and the full pixel density region at off-axis viewing angles, the position of the touch sensor metal in the pixel removal region may be tuned.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: September 5, 2023
    Assignee: Apple Inc.
    Inventors: Ricardo A Peterson, Abbas Jamshidi Roudbari, Ashray Vinayak Gogte, Christophe Blondin, Sebastian Knitter, Warren S Rieutort-Louis, Yuchi Che, Yurii Morozov, Matthew D Hollands, Chuang Qian, Michael H Lim, Matthew J Schwendeman, Kenny Kim, Tsung-Ting Tsai, Yue Qu
  • Patent number: 11741904
    Abstract: A display may have rows and columns of pixels. Gate lines may be used to supply gate signals to rows of the pixels. Data lines may be used to supply data signals to columns of the pixels. The data lines may include alternating even and odd data lines. Data lines may be organized in pairs each of which includes one of the odd data lines and an adjacent one of the even data lines. Demultiplexer circuitry may be configured dynamically during data loading and pixel sensing operations. During data loading, data from display driver circuitry may be supplied, alternately to odd pairs of the data lines and even pairs of the data lines. During sensing, the demultiplexer circuitry may couple a pair of the even data lines to sensing circuitry in the display driver circuitry and then may couple a pair of the odd data lines to the sensing circuitry.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Ting-Kuo Chang, Abbas Jamshidi Roudbari, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shinya Ono, Shin-Hung Yeh, Chien-Ya Lee, Shyuan Yang
  • Patent number: 11733807
    Abstract: A display may have an array of pixels. The pixels may contain light-emitting diodes. When it is desired to use the display to operate as a light sensor, some of the light-emitting diodes may be forward biased to emit light while some of the light-emitting diodes are reversed biased to detect the emitted light after the emitted light has reflected from an external object. During light sensing operations, one or more areas of the display may be temporarily deactivated so that the light-sensing pixels may measure the reflected light. Vertical lines may serve both as data loading lines and as current sensing lines. Currents may be sensed during drive transistor current compensation and during light sensing. The vertical lines may load signals into the pixels that forward bias the light-emitting diodes to emit light when it is desired to display images for a user.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: August 22, 2023
    Assignee: Apple Inc.
    Inventors: Hung Sheng Lin, Chin-Wei Lin, Tsung-Ting Tsai
  • Publication number: 20230260452
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang
  • Publication number: 20230247867
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 3, 2023
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee