Patents by Inventor Tsung-ting Tsai

Tsung-ting Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230247867
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 3, 2023
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee
  • Patent number: 11688363
    Abstract: An electronic device may include an electronic display including display pixels to display an image based on compensated image data. The electronic display may also include a stressed reference pixel to exhibit burn-in related aging in response to one or more stress sessions and a non-stressed reference pixel configured to not undergo the one or more stress sessions. Additionally, the electronic device may include image processing circuitry to determine a panel-specific aging profile based on a comparison between one or more properties of the stressed reference pixel and the one or more properties of the non-stressed reference pixel. The image processing circuitry may also generate one or more gain maps based on the panel-specific aging profile and generate the compensated image data by applying the one or more gain maps to input image data.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: June 27, 2023
    Assignee: Apple Inc.
    Inventors: Maofeng Yang, Jiayi Jin, David A. Doyle, Yifan Zhang, Weijun Yao, Jiye Lee, Tae-Wook Koh, Mathew K. Mathai, Chuang Qian, Tsung-Ting Tsai, James P. Landry, Kiran S. Pillai, Injae Hwang, Yongjun Li
  • Patent number: 11670219
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: June 6, 2023
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang
  • Publication number: 20230171988
    Abstract: An electronic device may have a display such as an organic light-emitting diode display. The organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. A first passivation layer, a first planarization layer, and a second passivation layer may be formed over the cathode. The first and second passivation layers may be formed from inorganic material. A second planarization layer may be formed over the second passivation layer between the second passivation layer and a polarizer. The second planarization layer may planarize the polarizer at the edges of the active area of the display where the polarizer would otherwise have a steep taper. Planarizing the polarizer in this way mitigates undesirable secondary reflections off of the polarizer. The first and second planarization layers may be formed from organic material.
    Type: Application
    Filed: October 18, 2022
    Publication date: June 1, 2023
    Inventors: Prashant Mandlik, Bhadrinarayana Lalgudi Visweswaran, Ankit Mahajan, Chia-Hao Chang, Christopher E Glazowski, David L Wei, Hui Lu, Takahide Ishii, Themistoklis Afentakis, Han Liu, Cheng-Chih Hsieh, Asli Sirman, Shih Chang Chang, Ko-Wei Chen, Shang-Chih Lin, Tsung-Ting Tsai, Jae Won Choi, Abbas Jamshidi Roudbari, Ting-Kuo Chang, Jean-Pierre S Guillou
  • Patent number: 11665933
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: May 30, 2023
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee
  • Patent number: 11587954
    Abstract: An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: February 21, 2023
    Assignee: Apple Inc.
    Inventors: Vasudha Gupta, Jae Won Choi, Shih Chang Chang, Tsung-Ting Tsai, Young Bae Park
  • Publication number: 20220392965
    Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have an anode that is coupled to a thin-film transistor pixel circuit for controlling the anode. Transparent windows may be formed in the display. The windows may be formed by replacing data storage capacitors and other pixel circuit structures in a subset of the pixels with transparent window structures, by selectively removing portions of light-emitting diode anodes, and by shifting anodes. An array of electrical components such as an array of light sensors may be aligned with the transparent windows and may be used to measure light passing through the transparent windows.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 8, 2022
    Inventors: Minhyuk Choi, Rui Liu, Cheng Chen, Chin-Wei Lin, Sang Y. Youn, Shih Chang Chang, Tsung-Ting Tsai
  • Patent number: 11495176
    Abstract: An electronic device may include a display and a sensor under the display. The display may include pixels having emission transistors that are controlled by emission signals. The emission signals are controlled using a pulse width modulation (PWM) scheme to control the brightness of the display. The emission signals may further include a localized sensor blackout pulse configured to generate a localized sensor blackout region that overlaps with the sensor to reduce any undesired back emission of light emitted from the display. The sensor blackout pulse may be automatically generated periodically or generated in an on-demand basis once per frame, multiple times per frame time, or once every multiple frames. Any luminance degradation caused by the sensor blackout pulse may be compensated by boosting the luminance and/or by extending the duration of each emission on pulse.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 8, 2022
    Assignee: Apple Inc.
    Inventors: Cheng-Chih Hsieh, Abbas Jamshidi Roudbari, Shih Chang Chang, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis
  • Publication number: 20220317820
    Abstract: Visibility of the metal mesh touch electrodes can be mitigated using one or more mitigation techniques. In some examples, the boundary between touch electrodes and/or the boundary between a touch electrode and a routing trace of another touch electrode and/or the boundary between two routing traces can be non-linear. In some examples, dummy cuts can be made within an area of a touch electrode region (e.g., while maintaining the same electrical potential for the touch electrode region). In some examples, notches can be made in the metal mesh. In some examples, the location of cuts and/or notches can be optimized to mitigate visibility of the metal mesh. In some examples, some or all of the visibility mitigations may be used in combination in a touch screen.
    Type: Application
    Filed: June 15, 2022
    Publication date: October 6, 2022
    Inventors: Tiffany Tang MOY, Tsung-Ting TSAI, Warren S. A. RIEUTORT-LOUIS, Aleksandr N. POLYAKOV, Chuang QIAN, Sabino Joseph PIETRANGELO, II, Abbas JAMSHIDI-ROUDBARI, Rui LIU, Yurii MOROZOV
  • Patent number: 11417709
    Abstract: A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have an anode that is coupled to a thin-film transistor pixel circuit for controlling the anode. Transparent windows may be formed in the display. The windows may be formed by replacing data storage capacitors and other pixel circuit structures in a subset of the pixels with transparent window structures, by selectively removing portions of light-emitting diode anodes, and by shifting anodes. An array of electrical components such as an array of light sensors may be aligned with the transparent windows and may be used to measure light passing through the transparent windows.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Minhyuk Choi, Rui Liu, Cheng Chen, Chin-Wei Lin, Sang Y. Youn, Shih Chang Chang, Tsung-Ting Tsai
  • Publication number: 20220238616
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Application
    Filed: April 19, 2022
    Publication date: July 28, 2022
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee
  • Publication number: 20220194762
    Abstract: A method and a system for controlling a handling machine, and a non-volatile computer readable recording medium are provided. The method includes: analyzing image data to obtain contour data corresponding to a target in the image data; analyzing the contour data to obtain feature data, where the feature data reflects the position of the target in the physical space; and generating control data based on the feature data, where the control data is adapted to control the handling machine to transport the target in response to the position of the target in the physical space.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Tsung-Ting Tsai, Carlos Andres Betancourt Baca, Yen-Chung Chang, Ching-Yi Liu
  • Patent number: 11366558
    Abstract: Visibility of the metal mesh touch electrodes can be mitigated using one or more mitigation techniques. In some examples, the boundary between touch electrodes and/or the boundary between a touch electrode and a routing trace of another touch electrode and/or the boundary between two routing traces can be non-linear. In some examples, dummy cuts can be made within an area of a touch electrode region (e.g., while maintaining the same electrical potential for the touch electrode region). In some examples, notches can be made in the metal mesh. In some examples, the location of cuts and/or notches can be optimized to mitigate visibility of the metal mesh. In some examples, some or all of the visibility mitigations may be used in combination in a touch screen.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 21, 2022
    Assignee: Apple Inc.
    Inventors: Tiffany Tang Moy, Tsung-Ting Tsai, Warren S. A. Rieutort-Louis, Aleksandr N. Polyakov, Chuang Qian, Sabino Joseph Pietrangelo, II, Abbas Jamshidi-Roudbari, Rui Liu, Yurii Morozov
  • Patent number: 11342395
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: May 24, 2022
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee
  • Publication number: 20220093059
    Abstract: An electronic device may include an electronic display including display pixels to display an image based on compensated image data. The electronic display may also include a stressed reference pixel to exhibit burn-in related aging in response to one or more stress sessions and a non-stressed reference pixel configured to not undergo the one or more stress sessions. Additionally, the electronic device may include image processing circuitry to determine a panel-specific aging profile based on a comparison between one or more properties of the stressed reference pixel and the one or more properties of the non-stressed reference pixel. The image processing circuitry may also generate one or more gain maps based on the panel-specific aging profile and generate the compensated image data by applying the one or more gain maps to input image data.
    Type: Application
    Filed: July 14, 2021
    Publication date: March 24, 2022
    Inventors: Maofeng Yang, Jiayi Jin, David A. Doyle, Yifan Zhang, Weijun Yao, Jiye Lee, Tae-Wook Koh, Mathew K. Mathai, Chuang Qian, Tsung-Ting Tsai, James P. Landry, Kiran S. Pillai, Injae Hwang, Yongjun Li
  • Patent number: 11257883
    Abstract: An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The display and substrate may have rounded corners. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping respective anodes for organic light-emitting diodes. A cathode layer may cover the array of pixels. A ground power supply path may be used to distribute a ground voltage to the cathode layer. The ground power supply path may be formed from a metal layer that is shorted to the cathode layer using portions of a metal layer that forms anodes for the diodes, may be formed from a mesh shaped metal pattern, may have L-shaped path segments, may include laser-deposited metal on the cathode layer, and may have other structures that facilitate distribution of the ground power supply.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: February 22, 2022
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Stephen S. Poon, Warren S. Rieutort-Louis, Cheng-Ho Yu, ChoongHo Lee, Doh-Hyoung Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Vasudha Gupta, Younggu Lee
  • Publication number: 20220052148
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20220037374
    Abstract: An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Vasudha Gupta, Jae Won Choi, Shih Chang Chang, Tsung-Ting Tsai, Young Bae Park
  • Patent number: 11233113
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: January 25, 2022
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Patent number: 11154330
    Abstract: A dual-trajectory pedicle screw system includes an internally threaded sleeve and including first part and cylindrical second part, the first part being recessed to form a space, and the second part including projections on top; a main screw including a universal head and a first conic member, the universal head including first and second threaded holes, the first threaded hole being inclined at a first angle, the second threaded hole being inclined at a different second angle, bottom of the universal head being a convex and rotatably disposed in the space; and an auxiliary screw including external threads threadedly secured to the first or second threaded hole so that the auxiliary screw is secured to the main screw at the first or second angle with respect to the main screw, a second conic member extending downward from the external threads, and a fitting member on top of the external threads.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: October 26, 2021
    Assignee: CHANG GUNG UNIVERSITY
    Inventors: Yun-Da Li, Ching-Lung Tai, Po-Liang Lai, Tsung-Ting Tsai, Ming-Kai Hsieh, Mu-Yi Liu