Patents by Inventor Tsutomu Makino

Tsutomu Makino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150339222
    Abstract: In a memory, multiple pieces of entry data sorted in ascending or descending order are stored associated with addresses. With whole addresses for storing the multiple pieces of entry data as an initial search area, the search circuit repeatedly performs a search operation for comparing entry data stored in a central address of the search area with the search data, outputting the address as a search result in the case of a match, and narrowing the search area for the next search based on a magnitude comparison result in the case of a mismatch.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 26, 2015
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Tsutomu MAKINO
  • Publication number: 20150202942
    Abstract: The present disclosure discloses a rooftop air conditioning unit for a bus or other vehicle. The air conditioning unit includes a frame, a condenser section mounted on the frame and a HVAC section mounted on the frame. The condenser section is positioned along a central longitudinal axis of the air conditioning unit, and the HVAC section is positioned in a distributed way on the two opposite sides of the condenser section and comprises at least one pair of HVAC modules, each of which includes a box-shaped base of plastic material mounted on the frame, inside which a respective blower, evaporator and heater are mounted.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 23, 2015
    Inventors: Leone CONTENTO, Massimo DI TONNO, Tsutomu MAKINO, Eiji OGURI, Tosiaki OKAMOTO
  • Publication number: 20150168033
    Abstract: A heat pump device includes: a compressor that compresses a refrigerant; a motor that drives the compressor; a wiring switching unit that switches a wiring structure of the motor; an inverter that applies a desired voltage to the motor; and an inverter control unit that generates a PWM signal for driving the inverter, that includes, as an operation mode, a heating operation mode in which a heating operation is performed on the compressor and a normal operation mode in which a refrigerant is compressed by performing a normal operation on the compressor, and that controls a switching operation of the wiring switching unit in accordance with an operation mode.
    Type: Application
    Filed: June 29, 2012
    Publication date: June 18, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Takashi Yamakawa, Kazunori Hatakeyama, Shota Kamiya, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20150096320
    Abstract: A heat pump device includes: a compressor including a compression mechanism compressing a refrigerant and a motor driving the compression mechanism; an inverter unit applying a voltage for driving the motor; an inverter control unit generating a driving signal for driving the inverter unit; and temperature sensors detecting temperatures of the compressor, wherein the inverter control unit includes a normal operation mode in which a refrigerant is compressed by performing a normal operation of the compressor and a heating operation mode in which a heating operation of the compressor is performed by applying, to the motor, a high-frequency voltage, and in the heating operation mode, the inverter control unit determines an amplitude and a phase of a voltage command for generating the high-frequency voltage on a basis of a temperatures detected by the temperature sensors and a necessary amount of heat specified in advance.
    Type: Application
    Filed: June 20, 2012
    Publication date: April 9, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shota Kamiya, Kazunori Hatakeyama, Kenta Yuasa, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20150089972
    Abstract: A heat pump device includes a compressor including a compression mechanism that compresses a refrigerant and a motor that drives the compression mechanism, an inverter that applies a voltage for driving the motor, a converter that applies a voltage to the inverter, an inverter control unit that generates a driving signal for driving the inverter, and a converter control unit that generates a driving signal for driving the converter, wherein the inverter control unit includes a heating operation mode in which a heating operation of the compressor is performed and a normal operation mode in which a refrigerant is compressed by performing a normal operation of the compressor and the converter control unit sets, in the heating operation mode of the inverter control unit, a voltage applied to the inverter on the basis of a voltage command value for the motor.
    Type: Application
    Filed: April 16, 2012
    Publication date: April 2, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shota Kamiya, Kazunori Hatakeyama, Kenta Yuasa, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Patent number: 8944777
    Abstract: The air-conditioning apparatus includes a coolant circuit configured by sequentially connecting a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger; a motor that operates a compressor mechanism disposed inside the compressor; an inverter for driving the motor; and a control unit that controls the inverter. The control unit includes a liquefaction detecting unit that detects coolant liquefaction in the compressor; includes a first PWM signal generating unit that generates an inverter control signal for driving the motor; includes a second PWM signal generating unit that generates an inverter control signal for making the motor perform a preheating operation; and includes a switching unit that performs switching in such a way that the first PWM signal generating unit or the second PWM signal generating unit outputs the corresponding inverter control signal to the inverter.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: February 3, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunori Sakanobe, Kazunori Hatakeyama, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20140338379
    Abstract: A heat pump device includes an inverter control unit for controlling an inverter. The inverter control unit includes a constraint-energization control unit that, during operation standby of a compressor, determines whether heating to the compressor is necessary, on the basis of a coolant sleeping amount in the compressor, and, when having determined that heating to the compressor is necessary, selects, according to the coolant sleeping amount, any one of direct-current energization for supplying a direct-current voltage to the motor and high-frequency energization for supplying a high-frequency voltage having a frequency higher than a frequency during a normal operation to the motor, so as to output a constraint energization command for carrying out constraint energization of the motor; and a driving-signal generating unit that generates a driving signal on the basis of the constraint energization command.
    Type: Application
    Filed: December 14, 2011
    Publication date: November 20, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kazunori Hatakeyama, Syota Kamiya, Kenta Yuasa, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20140338380
    Abstract: The present invention is a heat pump device that includes a compressor including a compression mechanism and a motor, a heat exchanger, an inverter, and an inverter control unit including a drive-signal generation unit generating a drive signal for the inverter and a heating-operation-mode control unit controlling the drive-signal generation unit when the compressor is heated by applying, to the motor, a high-frequency voltage with which the motor cannot be rotationally driven, wherein the heating-operation-mode control unit includes a magnetic-pole-position estimation unit estimating a magnetic pole position indicating a stop position of a rotor of the motor, and a high-frequency energization unit determining an amplitude and a phase of a voltage command based on an estimation result of the magnetic pole position and a necessary amount of heat, notifies the drive-signal generation unit of determined amplitude and phase, and causes the drive-signal generation unit to generate a drive signal.
    Type: Application
    Filed: January 4, 2012
    Publication date: November 20, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shota Kamiya, Kazunori Hatakeyama, Kenta Yuasa, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20140223926
    Abstract: A heat pump device includes an inverter control unit outputting PWM signals to an inverter; a current detection unit detecting a current value flowing in the inverter and outputting the current value after reducing a current value having a first frequency or higher in detected current value; and a drive-signal stop unit that, when the current value output from the current detection unit is equal to or larger than an interruption level, stops output of PWM signals to the inverter. Particularly, the inverter control unit generates a voltage command value such that the voltage command value becomes a value equal to or larger than a lower limit determined according to the first frequency and generates PWM signals based on generated voltage command value and a carrier signal, thereby causing a voltage output time to the motor to be a predetermined time or longer.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 14, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazunori Hatakeyama, Syota Kamiya, Kenta Yuasa, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Patent number: 8742668
    Abstract: A method for stabilizing plasma ignition in a continuous process conducted on a substrate, includes: applying a spike of RF power between an upper electrode and a lower electrode on which the substrate is placed, wherein the spike starts from zero power, jumps to a spike power, and then drops to a base power which is so low as to cause plasma ignition failure; and continuously applying RF power at the base power between the upper and lower electrode for a duration substantially longer than a duration of the spike to process the substrate. The spike is such that ignition failure is reduced.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: June 3, 2014
    Assignee: ASM IP Holdings B.V.
    Inventors: Ryu Nakano, Tsutomu Makino, Hisashi Takamizawa
  • Publication number: 20140062304
    Abstract: A method for stabilizing plasma ignition in a continuous process conducted on a substrate, includes: applying a spike of RF power between an upper electrode and a lower electrode on which the substrate is placed, wherein the spike starts from zero power, jumps to a spike power, and then drops to a base power which is so low as to cause plasma ignition failure; and continuously applying RF power at the base power between the upper and lower electrode for a duration substantially longer than a duration of the spike to process the substrate. The spike is such that ignition failure is reduced.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: ASM IP HOLDING B.V.
    Inventors: Ryu Nakano, Tsutomu Makino, Hisashi Takamizawa
  • Publication number: 20130291578
    Abstract: A voltage-command correction-value computation unit outputs a correction value for correcting a voltage command value according to a bus voltage. A multiplier calculates a voltage command value acquired by correcting the voltage command value based on the correction value. A voltage-command generation unit generates and outputs three-phase voltage command values based on the corrected voltage command value calculated by the multiplier and a phase. A PWM-signal generation unit generates six drive signals corresponding to switching elements of an inverter based on the three-phase voltage command values outputted by the voltage-command generation unit and a carrier signal. The PWM-signal generation unit outputs the generated drive signals to the corresponding switching elements of the three-phase inverter, to cause the inerter to generate a high-frequency AC voltage.
    Type: Application
    Filed: December 21, 2010
    Publication date: November 7, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazunori Hatakeyama, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20130269370
    Abstract: An object of the present invention is to maintain a heating amount constant when a compressor is heated at the time of shutdown of the compressor, regardless of the influences of production tolerance and environment variations. An inverter control unit causes an inverter to generate a high-frequency AC voltage having a de-energized section in which a voltage applied from the inverter to a motor is zero between a section in which the voltage is positive and a section in which the voltage is negative. At this time, the inverter control unit detects a value of a current flowing to the inverter in a detection section residing from immediately before a start of the de-energized section to immediately after an end of the de-energized section, and causes the inverter to generate a high-frequency AC voltage adjusted according to the detected current value.
    Type: Application
    Filed: April 28, 2011
    Publication date: October 17, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazunori Hatakeyama, Takuya Shimomugi, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20130180273
    Abstract: A selection unit switches between a phase ?p and a phase ?n different from the phase ?p substantially by 180 degrees, and outputs one of them in synchronization with a carrier signal. A voltage-command generation unit generates and outputs three-phase voltage command values Vu*, Vv* and Vw* based on the phase outputted by the selection unit. A PWM-signal generation unit generates three-phase voltage command values Vu*?, Vv*? and Vw*? by correcting the three-phase voltage command values Vu*, Vv* and Vw* outputted by the voltage-command generation unit according to a predetermined method, and generates six drive signals corresponding to switching elements of the inverter based on the three-phase voltage command values Vu*?, Vv*? and Vw*? and the carrier signal. The PWM-signal generation unit outputs the generated drive signals to the corresponding switching elements of the three-phase inverter, to cause the inverter to generate a high-frequency AC voltage.
    Type: Application
    Filed: October 15, 2010
    Publication date: July 18, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazunori Hatakeyama, Takuya Shimomugi, Shinya Matsushita, Naoki Wakuta, Shinsaku Kusube, Tsutomu Makino
  • Publication number: 20130152609
    Abstract: An adder adds a phase ?plus, which is n times a size of 60 degrees, to a phase output from a phase switching unit and outputs the phase as a voltage command phase ?. A voltage generation unit generates voltage command value based on the voltage command phase output by the adder and outputs the command value. A drive-signal generation unit, based on an output from the voltage generation unit generates drive signals corresponding to respective switching elements of an inverter, and outputs respective generated drive signals to the corresponding switching elements of the inverter, and generates a high-frequency AC voltage in the inverter.
    Type: Application
    Filed: August 30, 2010
    Publication date: June 20, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazunori Hatakeyama, Takuya Shimomugi, Shinya Matsushita, Naoki Wakuta, Tsutomu Makino, Shinsaku Kusube
  • Publication number: 20120234031
    Abstract: An air conditioner equipped with a compressor, an indoor heat exchanger and an outdoor heat exchanger includes: an inverter circuit that drives a motor of the compressor; an inverter-power detecting unit that detects power of the inverter circuit; a PWM-signal generating unit that inverter-current detecting unit generates PWM signals for controlling the inverter circuit; a voltage-command-value generating unit that outputs voltage command values to the PWM-signal generating unit; and an accumulation detecting unit that detects accumulation of a liquid refrigerant within the compressor and outputs a detection result to the voltage-command-value generating unit, wherein when accumulation of a liquid refrigerant within the compressor is detected, the voltage-command-value generating unit outputs the voltage command value so that power of the inverter circuit has a predetermined power value.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 20, 2012
    Inventors: Kazunori Hatakeyama, Kazunori Sakanobe, Shinya Matsushita, Tsutomu Makino
  • Publication number: 20120111043
    Abstract: In order to be able to comply itself to the environment-conscious design standard, a refrigerant heating method is obtained with high efficiency during standby and reduction of vibrations and noises of a bearing in a compressor.
    Type: Application
    Filed: March 4, 2010
    Publication date: May 10, 2012
    Inventors: Kazunori Hatakeyama, Kazunori Sakanobe, Shinya Matsushita, Tsutomu Makino
  • Publication number: 20120096881
    Abstract: The air-conditioning apparatus includes a coolant circuit configured by sequentially connecting a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger; a motor that operates a compressor mechanism disposed inside the compressor; an inverter for driving the motor; and a control unit that controls the inverter. The control unit includes a liquefaction detecting unit that detects coolant liquefaction in the compressor; includes a first PWM signal generating unit that generates an inverter control signal for driving the motor; includes a second PWM signal generating unit that generates an inverter control signal for making the motor perform a preheating operation; and includes a switching unit that performs switching in such a way that the first PWM signal generating unit or the second PWM signal generating unit outputs the corresponding inverter control signal to the inverter.
    Type: Application
    Filed: April 20, 2010
    Publication date: April 26, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kazunori Sakanobe, Kazunori Hatakeyama, Shinya Matsushita, Shinsaku Kusube, Tsutomu Makino
  • Patent number: 8141567
    Abstract: A processing apparatus includes: a tank configured to store water; vapor generating unit configured to turn the water supplied from the tank into vapor; a processing chamber in which vapor supplied from the vapor generating unit is used to remove residues from a workpiece; cooling unit; and filtering unit. The cooling unit cools waste liquid ejected from the processing chamber. The filtering unit is provided between the cooling unit and the tank, and the filtering unit filters the waste liquid cooled in the cooling unit. A processing method includes: supplying vapor into a processing chamber; removing residues from a workpiece using the vapor; cooling waste liquid containing the removed residues to precipitate the residues as solids; and filtering the waste liquid containing the precipitates.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahiko Wakatsuki, Naoya Hayamizu, Hiroshi Fujita, Akiko Saito, Toshihide Hayashi, Yukinobu Nishibe, Tsutomu Makino
  • Patent number: 7945345
    Abstract: A semiconductor manufacturing apparatus includes a first program on a controller and a second program on an interface board between the controller and controlled devices. Both of the programs update their own counters and exchange their counter values with each other, serving as bi-directional software watchdog timers (WDT). If a counter value of the first program on the controller sent to the second program on the interface board is determined to be abnormal by the second program, the second program on the interface board sends commands to the controlled devices to terminate output so that the apparatus is navigated to a safe mode. The first program similarly monitors the counter values of the second program for anomalies. This bi-directional software WDT can be implemented as add-on to software programs that already exist in the controller and the interface board, therefore, this implementation does not incur extra cost of hardware of the apparatus.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: May 17, 2011
    Assignee: ASM Japan K.K.
    Inventors: Masahiro Takizawa, Tsutomu Makino