Patents by Inventor Tuan A. Vo

Tuan A. Vo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9028628
    Abstract: Oxide-oxide fusion bonding of wafers that includes performing a van der Waals force bonding process with a chuck having at least a flat central zone and an outer annular zone lower than the central zone, an edge portion of a mounted wafer is biased towards the outer annular zone. The van der Waals bonding wave is disrupted at the outer annular zone, causing an edge gap. A thermocompression bonding process is performed that includes heating the bonded wafers to a temperature sufficient to initiate condensation of silanol groups between the bonding surfaces, reducing the atmospheric pressure to cause degassing from between the wafers, applying a compression force to the wafers with flat chucks so as to substantially eliminate the edge gap, and performing a permanent anneal bonding process.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo
  • Patent number: 9004131
    Abstract: A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 14, 2015
    Assignees: Duke University, Immunolight, LLC
    Inventors: Frederic Avery Bourke, Jr., Tuan Vo-Dinh
  • Patent number: 8986921
    Abstract: A lithographic material stack including a metal-compound hard mask layer is provided. The lithographic material stack includes a lower organic planarizing layer (OPL), a dielectric hard mask layer, and the metal-compound hard mask layer, an upper OPL, an optional anti-reflective coating (ARC) layer, and a photoresist layer. The metal-compound hard mask layer does not attenuate optical signals from lithographic alignment marks in underlying material layers, and can facilitate alignment between different levels in semiconductor manufacturing.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Bryan G. Morris, Tuan A. Vo, Christopher J. Waskiewicz, Yunpeng Yin
  • Patent number: 8987133
    Abstract: A vertical stack including a dielectric hard mask layer and a titanium nitride layer is formed over an interconnect-level dielectric material layer such as an organosilicate glass layer. The titanium nitride layer may be partially or fully converted into a titanium oxynitride layer, which is subsequently patterned with a first pattern. Alternately, the titanium nitride layer, with or without a titanium oxynitride layer thereupon, may be patterned with a line pattern, and physically exposed surface portions of the titanium nitride layer may be converted into titanium oxynitride. Titanium oxynitride provides etch resistance during transfer of a combined first and second pattern, but can be readily removed by a wet etch without causing surface damages to copper surfaces. A chamfer may be formed in the interconnect-level dielectric material layer by an anisotropic etch that employs any remnant portion of titanium nitride as an etch mask.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Son V. Nguyen, Tuan A. Vo, Christopher J. Waskiewicz
  • Patent number: 8975922
    Abstract: Electronic logic gates that operate using N logic state levels, where N is greater than 2, and methods of operating such gates. The electronic logic gates operate according to truth tables. At least two input signals each having a logic state that can range over more than two logic states are provided to the logic gates. The logic gates each provide an output signal that can have one of N logic states. Examples of gates described include NAND/NAND gates having two inputs A and B and NAND/NAND gates having three inputs A, B, and C, where A, B and C can take any of four logic states. Systems using such gates are described, and their operation illustrated. Optical logic gates that operate using N logic state levels are also described.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: March 10, 2015
    Assignee: California Institute of Technology
    Inventors: Adrian Stoica, Radu Andrei, David Zhu, Mohammad Mehdi Mojarradi, Tuan A. Vo
  • Patent number: 8951561
    Abstract: The use of plasmonics enhanced photospectral therapy (PEPST) and exiton-plasmon enhanced phototherapy (EPEP) in the treatment of various cell proliferation disorders, and the PEPST and EPEP agents and probes used therein.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 10, 2015
    Assignees: Duke University, Immunolight
    Inventors: Tuan Vo-Dinh, Frederic A. Bourke, Jr.
  • Patent number: 8927615
    Abstract: A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: January 6, 2015
    Assignees: Immunolight, LLC, Duke University
    Inventors: Frederic Avery Bourke, Jr., Tuan Vo-Dinh
  • Patent number: 8907109
    Abstract: Psoralen compounds of Formula (I): wherein (N+ Aryl) is a member selected from the group consisting of nitrogen containing aromatic heterocycles of formulae (i)-(iii): wherein Z is a group of formula: wherein R is C1-C30 hydrocarbyl, which may be linear, branched or cyclic and contains from 1 to 15 carbon-carbon double bonds, which may be conjugated or unconjugated with one another or may include an aryl ring, and may contain one or more substituents; R1 is hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, heterocyclyl, alkenyl, alkynyl, alkene-aryl, alkene-heteroaryl, alkene-heterocyclyl, alkene-cycloalkyl, fused cycloalkylaryl, fused cycloalkylheteroaryl, fused heterocyclylaryl, fused heterocyclyheteroaryl, alkylene-fused cycloalkylaryl, alkylene-fused cycloalkylheteroaryl, alkylene-fused heterocyclylaryl, alkylene-fused heterocyclyheteroaryl; n is an integer from 1 to 8 and X is a pharmaceutically acceptable counter ion; and their use in methods for the treatment of a cell proliferat
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 9, 2014
    Assignees: Immunolight, LLC, Duke University
    Inventors: Eric Toone, David Gooden, Tuan Vo-Dinh, Frederic A. Bourke, Jr.
  • Publication number: 20140353839
    Abstract: A manganese oxide layer is deposited as a hard mask layer on substrate including at least a dielectric material layer. An optional silicon oxide layer may be formed over the manganese oxide layer. A patterned photoresist layer can be employed to etch the optional silicon oxide layer and the manganese oxide layer. An anisotropic etch process is employed to etch the dielectric material layer within the substrate. The dielectric material layer can include silicon oxide and/or silicon nitride, and the manganese oxide layer can be employed as an effective etch mask that minimizes hard mask erosion and widening of the etched trench. The manganese oxide layer may be employed as an etch mask for a substrate bonding process.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: International Business Machines Corporation
    Inventors: Wei Lin, Spyridon Skordas, Tuan A. Vo
  • Publication number: 20140356983
    Abstract: A method generally for improving wafer-to-wafer bonding alignment. Planar distortions of the bonding surface of a host wafer are determined. The bonding surface of a donor wafer is distorted such that the distortions of the donor wafer bonding surface correspond to the determined planar distortions of the host wafer bonding surface. Also, a method to separate bonded wafers. A bonded wafer pair is mounted between first and second bonding chucks having flat chuck faces, the first bonding chuck face including adjustable zones capable of movement relative to each other, at least a component of the relative movement is along an axis that is perpendicular to the flat first bonding chuck face. The adjustable zones of the first face are moved relative to each other in a coordinated manner such that a widening gap is formed between the bonding faces of the wafer pair.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 4, 2014
    Inventors: Wei Lin, Spyridon Skordas, Tuan A. Vo
  • Publication number: 20140353828
    Abstract: A metallic dopant element having a greater oxygen-affinity than copper is introduced into, and/or over, surface portions of copper-based metal pads and/or surfaces of a dielectric material layer embedding the copper-based metal pads in each of two substrates to be subsequently bonded. A dopant-metal silicate layer may be formed at the interface between the two substrates to contact portions of metal pads not in contact with a surface of another metal pad, thereby functioning as an oxygen barrier layer, and optionally as an adhesion material layer. A dopant metal rich portion may be formed in peripheral portions of the metal pads in contact with the dopant-metal silicate layer. A dopant-metal oxide portion may be formed in peripheral portions of the metal pads that are not in contact with a dopant-metal silicate layer.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Daniel C. Edelstein, Douglas C. La Tulipe, JR., Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo, Kevin R. Winstel
  • Publication number: 20140343479
    Abstract: The present invention relates to methods for treating cell proliferation disorders comprising (1) administering to the subject at least one activatable pharmaceutical agent that is capable of activation by a simultaneous two photon absorption event and of effecting a predetermined cellular change when activated, (2) administering at least one plasmonics-active agent to the subject, and (3) applying an initiation energy from an initiation energy source to the subject, wherein the plasmonics-active agent enhances or modifies the applied initiation energy, such that the enhanced or modified initiation energy activates the activatable pharmaceutical agent by the simultaneous two photon absorption event in situ, thus causing the predetermined cellular change to occur, wherein said predetermined cellular change treats the cell proliferation related disorder, and the use of plasmonics enhanced photospectral therapy (PEPST) and exiton-plasmon enhanced phototherapy (EPEP) in the treatment of various cell proliferation
    Type: Application
    Filed: April 18, 2014
    Publication date: November 20, 2014
    Applicants: Immunolight, LLC, Duke University
    Inventors: Frederic A. BOURKE, Tuan Vo Dinh
  • Publication number: 20140273425
    Abstract: Embodiments include methods of forming dielectric layers. According to an exemplary embodiment, a dielectric layer may be formed by determining a desired thickness of the dielectric layer, forming a first dielectric sub-layer having a thickness less than the desired thickness by depositing a first metal layer above a substrate and oxidizing the first metal layer, and forming n (where n is greater than 1) additional dielectric sub-layers having a thickness less than the desired thickness above the first dielectric sub-layer by the same method of the first dielectric sub-layer so that a combined thickness of all dielectric sub-layers is approximately equal to the desired thickness.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicants: CANON ANELVA CORPORATION, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Jamison, Juntao Li, Vamsi Paruchuri, Tuan A. Vo, Takaaki Tsunoda, Sanjay Shinde
  • Publication number: 20140265165
    Abstract: A chuck face of a wafer bonding chuck that includes a flat central zone and an outer annular zone contiguous to the central zone, the outer annular zone being lower than the flat central zone such that an annular edge portion of a wafer that is mounted to the chuck face has a convex profile with respect to the chuck face of the bonding chuck. The outer annular zone may move along an axis that is perpendicular to the central zone. The chuck face may include a plurality of contiguous zones, with at least one of the zones moveable with respect to another of the zones.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wei Lin, Spyridon Skordas, Tuan A. Vo
  • Publication number: 20140261960
    Abstract: Oxide-oxide fusion bonding of wafers that includes performing a van der Waals force bonding process with a chuck having at least a flat central zone and an outer annular zone lower than the central zone, an edge portion of a mounted wafer is biased towards the outer annular zone. The van der Waals bonding wave is disrupted at the outer annular zone, causing an edge gap. A thermocompression bonding process is performed that includes heating the bonded wafers to a temperature sufficient to initiate condensation of silanol groups between the bonding surfaces, reducing the atmospheric pressure to cause degassing from between the wafers, applying a compression force to the wafers with flat chucks so as to substantially eliminate the edge gap, and performing a permanent anneal bonding process.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wei Lin, Deepika Priyadarshini, Spyridon Skordas, Tuan A. Vo
  • Publication number: 20140243934
    Abstract: Products, compositions, systems, and methods for modifying a target structure. The methods may be performed in a non-invasive manner by placing a nanoparticle having a metallic shell on at least a fraction of a surface in a vicinity of a target structure in a subject and applying an initiation energy thus producing an effect on or change to the target structure directly or via a modulation agent. The nanoparticle is configured, upon exposure to a first wavelength ?1, to generate a second wavelength ?2 of radiation having a higher energy than the first wavelength ?1. The methods may further be performed by application of an initiation energy to activate a photoactivatable agent directly or via an energy modulation agent, optionally in the presence of one or more plasmonics active agents, thus producing an effect on or change to the target structure. Kits containing products or compositions formulated or configured and systems for use in practicing these methods.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicants: DUKE UNIVERSITY, IMMUNOLIGHT, LLC
    Inventors: Tuan VO-DINH, Jonathan P. Scaffidi, Venkata Gopal Reddy Chada, Benoit Lauly, Yan Zhang, Molly K. Gregas, Ian Nicholas Stanton, Joshua T. Stecher, Michael J. Therien, Frederic A. Bourke, JR., Harold Walder, Zak Fathi, Jennifer A. Ayres, Zhenyuan Zhang, Joseph H. Simmons, Stephen John Norton
  • Publication number: 20140222117
    Abstract: A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicants: DUKE UNIVERSITY, IMMUNOLIGHT, LLC.
    Inventors: Frederic Avery Bourke, JR., Tuan Vo-Dinh
  • Patent number: 8791275
    Abstract: Psoralen compounds of Formula (I): wherein (N+ Aryl) is a member selected from the group consisting of nitrogen containing aromatic heterocycles of formulae (i)-(iii): wherein Z is a group of formula: wherein R is C1-C30 hydrocarbyl, which may be linear, branched or cyclic and contains from 1 to 15 carbon-carbon double bonds, which may be conjugated or unconjugated with one another or may include an aryl ring, and may contain one or more substituents; R1 is hydrogen, aryl, heteroaryl, alkyl, cycloalkyl, heterocyclyl, alkenyl, alkynyl, alkene-aryl, alkene-heteroaryl, alkene-heterocyclyl, alkene-cycloalkyl, fused cycloalkylaryl, fused cycloalkylheteroaryl, fused heterocyclylaryl, fused heterocyclyheteroaryl, alkylene-fused cycloalkylaryl, alkylene-fused cycloalkylheteroaryl, alkylene-fused heterocyclylaryl, alkylene-fused heterocyclyheteroaryl; n is an integer from 1 to 8 and X is a pharmaceutically acceptable counter ion; and their use in methods for the treatment of a cell proliferat
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 29, 2014
    Assignees: Duke University, Immunolight, LLC
    Inventors: Eric Toone, David Gooden, Tuan Vo-Dinh, Frederic A. Bourke, Jr.
  • Publication number: 20140199628
    Abstract: A lithographic material stack including a metal-compound hard mask layer is provided. The lithographic material stack includes a lower organic planarizing layer (OPL), a dielectric hard mask layer, and the metal-compound hard mask layer, an upper OPL, an optional anti-reflective coating (ARC) layer, and a photoresist layer. The metal-compound hard mask layer does not attenuate optical signals from lithographic alignment marks in underlying material layers, and can facilitate alignment between different levels in semiconductor manufacturing.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Bryan G. Morris, Tuan A. Vo, Christopher J. Waskiewicz, Yunpeng Yin
  • Patent number: 8770203
    Abstract: The present invention relates to methods for treating cell proliferation disorders comprising (1) administering to the subject at least one activatable pharmaceutical agent that is capable of activation by a simultaneous two photon absorption event and of effecting a predetermined cellular change when activated, (2) administering at least one plasmonics-active agent to the subject, and (3) applying an initiation energy from an initiation energy source to the subject, wherein the plasmonics-active agent enhances or modifies the applied initiation energy, such that the enhanced or modified initiation energy activates the activatable pharmaceutical agent by the simultaneous two photon absorption event in situ, thus causing the predetermined cellular change to occur, wherein said predetermined cellular change treats the cell proliferation related disorder, and the use of plasmonics enhanced photospectral therapy (PEPST) and exiton-plasmon enhanced phototherapy (EPEP) in the treatment of various cell proliferation
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: July 8, 2014
    Assignees: Immunolight, LLC., Duke University
    Inventors: Frederic A. Bourke, Jr., Tuan Vo Dinh