Patents by Inventor Tuo Shi

Tuo Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160269343
    Abstract: The present disclosure provides a detailed description of techniques used in systems, methods, and in computer program products for bi-directional social media broker services that connect multiple social media sites using a common management framework. The claimed embodiments address the problem of efficiently scaling and managing bidirectional interaction with multiple social media publishing channels. More specifically, the claimed embodiments are directed to approaches for a computing platform having multiple message broker modules that enable bi-directional communication of messages between a common resource manager and a plurality of social media sites. The message broker modules can receive messages in a unified message format from the common resource manager, queue the messages for asynchronous processing, translate the messages from the unified message format to a site-specific format, and deliver the translated messages to multiple social media sites.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 15, 2016
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Wenhua LI, Vivek NAMA, Yizhou JIANG, Vivek S. SHAH, Natalie YOU, Eran CEDAR, Quan YUAN, Muhan ZOU, Tuo SHI
  • Patent number: 9429776
    Abstract: Various structures of an electro-optic device and fabrication methods thereof are described. A fabrication method is provided to fabricate an electro-optic device which may include a silicon-based rib-waveguide modulator which includes a first top silicon layer, having a first doped region that is at least partially doped with dopants of a first conducting type, a second top silicon layer, having a second doped region that is at least partially doped with dopants of a second conducting type, and a thin dielectric gate layer disposed between the first top silicon layer and the second top silicon layer. The second doped region may be at least in part directly over the first doped region. The modulator may also include a rib waveguide formed on the second top silicon layer, a first electric contact formed on the first top silicon layer, and a second electric contact formed on the second top silicon layer.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 30, 2016
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Tuo Shi, Changhua Chen, Yongbo Shao, Tzung-I Su, Dong Pan
  • Patent number: 9397243
    Abstract: Various embodiments of a germanium-on-silicon (Ge—Si) avalanche photodiode are provided. In one aspect, the Ge—Si avalanche photodiode utilizes a silicon carrier-energy-relaxation layer to reduce the energy of holes drifting into absorption layer where the absorption material has lower ionization threshold, thereby suppressing multiplication noise and increasing the gain-bandwidth product of the avalanche photodiode.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: July 19, 2016
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Tuo Shi, Mengyuan Huang, Pengfei Cai, Su Li, Ching-yin Hong, Wang Chen, Liangbo Wang, Dong Pan
  • Publication number: 20160155883
    Abstract: Various embodiments of a novel structure of a Ge/Si avalanche photodiode with an integrated heater, as well as a fabrication method thereof, are provided. In one aspect, a doped region is formed either on the top silicon layer or the silicon substrate layer to function as a resistor. When the environmental temperature decreases to a certain point, a temperature control loop will be automatically triggered and a proper bias is applied along the heater, thus the temperature of the junction region of a Ge/Si avalanche photodiode is kept within an optimized range to maintain high sensitivity of the avalanche photodiode and low bit-error rate level.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 2, 2016
    Inventors: Tuo Shi, Pengfei Cai, Liangbo Wang, Nai Zhang, Wang Chen, Su Li, Ching-yin Hong, Mengyuan Huang, Dong Pan
  • Patent number: 9315832
    Abstract: A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 19, 2016
    Assignee: Algenol Biotech LLC
    Inventors: Irina Piven, Alexandra Friedrich, Ulf Dühring, Frank Uliczka, Kerstin Baier, Masami Inaba, Tuo Shi, Kui Wang, Heike Enke, Dan Kramer
  • Patent number: 9299864
    Abstract: Various embodiments of a novel structure of a Ge/Si avalanche photodiode with an integrated heater, as well as a fabrication method thereof, are provided. In one aspect, a doped region is formed either on the top silicon layer or the silicon substrate layer to function as a resistor. When the environmental temperature decreases to a certain point, a temperature control loop will be automatically triggered and a proper bias is applied along the heater, thus the temperature of the junction region of a Ge/Si avalanche photodiode is kept within an optimized range to maintain high sensitivity of the avalanche photodiode and low bit-error rate level.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: March 29, 2016
    Assignee: SiFotonics Technologies Co., Ltd.
    Inventors: Tuo Shi, Pengfei Cai, Liangbo Wang, Nai Zhang, Wang Chen, Su Li, Ching-yin Hong, Mengyuan Huang, Dong Pan
  • Patent number: 9287432
    Abstract: Various embodiments of a germanium-on-silicon (Ge—Si) photodiode are provided along with the fabrication method thereof. In one aspect, a Ge—Si photodiode includes a doped bottom region at the bottom of a germanium layer, formed by thermal diffusion of donors implanted into a silicon layer. The Ge—Si photodiode further includes a doped sidewall region of Ge mesa formed by ion implantation. Thus, the electric field is distributed in the intrinsic region of the Ge—Si photodiode where there is low dislocation density. The doped bottom region and sidewall region of the Ge layer prevent electric field from penetrating into the Ge—Si interface and Ge mesa sidewall region, where a large amount of dislocations are distributed. This design significantly suppresses dark current.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: March 15, 2016
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Tuo Shi, Liangbo Wang, Pengfei Cai, Ching-yin Hong, Mengyuan Huang, Wang Chen, Su Li, Dong Pan
  • Publication number: 20160053284
    Abstract: A genetically enhanced cyanobacterial host cell, Cyanobacterium sp. ABICyanoI, is disclosed. The enhanced Cyanobacterium sp. ABICyanoI produces a compound or compounds of interest.
    Type: Application
    Filed: December 23, 2013
    Publication date: February 25, 2016
    Inventors: Kui WANG, Tuo SHI, Irina PIVEN, Masami INABA, Frank ULICZKA, Dan KRAMER, Heike ENKE, Kerstin BAIER, Alexandra FRIEDRICH, Ulf DUEHRING
  • Publication number: 20160041340
    Abstract: An optical coupler structure may include a substrate, a waveguide section and an anchored cantilever section. The substrate may include a main body and a sub-pillar structure formed on the main body. The waveguide section may be disposed on the substrate, and may include a core waveguide of a first material surrounded by a cladding layer of a second material. The anchored cantilever section may be disposed on the sub-pillar structure on the substrate, which may be configured to support the cantilever section and separate the cantilever section from the main body of the substrate. The anchored cantilever section may include a multi-stage inverse taper core waveguide and a cladding layer, of the second material, which surrounds the multi-stage inverse taper core waveguide.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 11, 2016
    Inventors: Tuo Shi, Tzung-I Su, Changhua Chen, Yongbo Shao, Dong Pan
  • Publication number: 20160025932
    Abstract: An integrated optical coupling device may include a substrate, a coating layer disposed on the substrate, and a prism disposed on the coating layer. The prism may include a first surface and a second surface. The integrated optical coupling device may also include a first lens disposed on the first surface of the prism, a second lens disposed on the second surface of the prism, and an anti-reflection coating layer disposed on the first lens and the second lens.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 28, 2016
    Inventors: Tuo Shi, Shipeng Yan, Nai Zhang, Dong Pan
  • Publication number: 20150378185
    Abstract: Various structures of an electro-optic device and fabrication methods thereof are described. A fabrication method is provided to fabricate an electro-optic device which may include a silicon-based rib-waveguide modulator which includes a first top silicon layer, having a first doped region that is at least partially doped with dopants of a first conducting type, a second top silicon layer, having a second doped region that is at least partially doped with dopants of a second conducting type, and a thin dielectric gate layer disposed between the first top silicon layer and the second top silicon layer. The second doped region may be at least in part directly over the first doped region. The modulator may also include a rib waveguide formed on the second top silicon layer, a first electric contact formed on the first top silicon layer, and a second electric contact formed on the second top silicon layer.
    Type: Application
    Filed: June 30, 2015
    Publication date: December 31, 2015
    Inventors: Tuo Shi, Changhua Chen, Yongbo Shao, Tzung-I Su, Dong Pan
  • Publication number: 20150338577
    Abstract: Various embodiments of an integrated polarization rotator-splitter/combiner apparatus are described. An integrated polarization rotator-splitter apparatus may include an input waveguide section, a polarization rotator section, a polarization splitter section and an outgoing waveguide section, which can also be reversely connected as a polarization rotator-combiner.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Tuo Shi, Changhua Chen, Yongbo Shao, Dong Pan
  • Publication number: 20150322442
    Abstract: A plasmid vector for the production of compounds in cyanobacteria is described which is capable of being efficiently transformed to and replicating in a broad range of cyanobacterial species.
    Type: Application
    Filed: June 12, 2015
    Publication date: November 12, 2015
    Applicant: ALGENOL BIOFUELS INC.
    Inventors: Kui WANG, Tuo SHI
  • Patent number: 9157101
    Abstract: A genetically enhanced cyanobacterial host cell, Cyanobacterium sp. ABICyano1, is disclosed. The enhanced Cyanobacterium sp. ABICyano1 produces a compound or compounds of interest.
    Type: Grant
    Filed: December 22, 2013
    Date of Patent: October 13, 2015
    Assignee: Algenol Biotech LLC
    Inventors: Irina Piven, Alexandra Friedrich, Ulf Dühring, Frank Uliczka, Kerstin Baier, Masami Inaba, Tuo Shi, Kui Wang, Heike Enke, Dan Kramer
  • Publication number: 20150243800
    Abstract: Various embodiments of a novel structure of a Ge/Si avalanche photodiode with an integrated heater, as well as a fabrication method thereof, are provided. In one aspect, a doped region is formed either on the top silicon layer or the silicon substrate layer to function as a resistor. When the environmental temperature decreases to a certain point, a temperature control loop will be automatically triggered and a proper bias is applied along the heater, thus the temperature of the junction region of a Ge/Si avalanche photodiode is kept within an optimized range to maintain high sensitivity of the avalanche photodiode and low bit-error rate level.
    Type: Application
    Filed: January 26, 2015
    Publication date: August 27, 2015
    Inventors: Tuo Shi, Pengfei Cai, Liangbo Wang, Nai Zhang, Wang Chen, Su Li, Ching-yin Hong, Mengyuan Huang, Dong Pan
  • Patent number: 9000551
    Abstract: A GeSi avalanche photodiode (APD includes an anti-reflection structure, a Ge absorption region, and a resonance cavity enhanced (RCE) reflector. The anti-reflection structure includes one or more dielectric layers and a top contact layer which is heavily doped with dopants of a first polarity. The RCE reflector includes: an intrinsic or lightly doped Si multiplication layer, a Si contact layer which is heavily doped with dopants of a second polarity opposite the first polarity, a Si cavity length compensation layer, a buried oxide (BOX) layer, and a Si substrate.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 7, 2015
    Assignee: SiFotonics Technologies Co, Ltd.
    Inventors: Mengyuan Huang, Tuo Shi, Pengfei Cai, Dong Pan
  • Publication number: 20150028443
    Abstract: Various embodiments of a germanium-on-silicon (Ge—Si) avalanche photodiode are provided. In one aspect, the Ge—Si avalanche photodiode utilizes a silicon buffer layer to reduce the energy of holes drifting into absorption layer where the absorption material has lower ionization threshold, thereby suppressing multiplication noise and increasing the gain-bandwidth product of the avalanche photodiode. In another aspect, the Ge—Si avalanche photodiode utilizes an edge electric field buffer layer region to reduce the electric field along the sidewall of multiplication layer, where high electric field is applied for avalanche, thereby reducing probability of sidewall breakdown and enhancing reliability of the avalanche photodiode.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventors: Tuo Shi, Mengyuan Huang, Pengfei Cai, Su Li, Ching-yin Hong, Wang Chen, Liangbo Wang, Dong Pan
  • Publication number: 20150028386
    Abstract: Various embodiments of a germanium-on-silicon (Ge—Si) photodiode are provided along with the fabrication method thereof. In one aspect, a Ge—Si photodiode includes a doped bottom region at the bottom of a germanium layer, formed by thermal diffusion of donors implanted into a silicon layer. The Ge—Si photodiode further includes a doped sidewall region of Ge mesa formed by ion implantation. Thus, the electric field is distributed in the intrinsic region of the Ge—Si photodiode where there is low dislocation density. The doped bottom region and sidewall region of the Ge layer prevent electric field from penetrating into the Ge—Si interface and Ge mesa sidewall region, where a large amount of dislocations are distributed. This design significantly suppresses dark current.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventors: Tuo Shi, Liangbo Wang, Pengfei Cai, Ching-yin Hong, Mengyuan Huang, Wang Chen, Su Li, Dong Pan
  • Publication number: 20150017704
    Abstract: A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 15, 2015
    Applicant: ALGENOL BIOFUELS INC.
    Inventors: Irina Piven, Alexandra Friedrich, Ulf Dühring, Frank Uliczka, Kerstin Baier, Masami Inaba, Tuo Shi, Kui Wang, Heike Enke, Dan Kramer
  • Publication number: 20150008433
    Abstract: Various embodiments of a compensated photonic device structure and fabrication method thereof are described herein. In one aspect, a photonic device may include a substrate and a functional layer disposed on the substrate. The substrate may be made of a first material and the functional layer may be made of a second material that is different from the first material. The photonic device may also include a compensation region formed at an interface region between the substrate and the functional layer. The compensation region may be doped with compensation dopants such that a first carrier concentration around the interface region of function layer is reduced and a second carrier concentration in a bulk region of functional layer is reduced.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Inventors: Mengyuan Huang, Liangbo Wang, Su Li, Tuo Shi, Pengfei Cai, Wang Chen, Ching-yin Hong, Dong Pan