Patents by Inventor Twan van Lippen

Twan van Lippen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120091546
    Abstract: A microphone comprises a substrate (20), a microphone membrane (10) defining an acoustic input surface and a backplate (11) supported with respect to the membrane with a fixed spacing between the backplate (11) and the membrane (10). A microphone periphery area comprises parallel corrugations (24) in the membrane (10) and backplate (11). By using the same corrugated suspension for both the membrane and the backplate, the sensitivity to body noise is optimally suppressed.
    Type: Application
    Filed: April 20, 2010
    Publication date: April 19, 2012
    Applicant: KNOWLES ELECTRONICS ASIA PTE. LTD.
    Inventors: Geert Langereis, Twan Van Lippen, Freddy Roozeboom, Hilco Suy, Klaus Reimann, Jozef Thomas Martinus Van Beek, Casper Van Der Avoort, Johannes Van Wingerden, Kim Phan Le, Martijn Goosens, Peter Gerard Steeneken
  • Publication number: 20120056282
    Abstract: A MEMS transducer (10) for an audio device comprises a substrate (12), a membrane (14) attached to the substrate (12), and a back-electrode (18) attached to the substrate (12), wherein a resonant frequency of the back-electrode (18) is matched to a resonant frequency of the membrane (14). Further, a method of manufacturing a MEMS transducer (19) for an audio device comprises attaching a membrane to a substrate (12), attaching a back-electrode (18) to the substrate (12), matching a resonant frequency of the back-electrode (18) to a resonant frequency of the membrane (14).
    Type: Application
    Filed: March 30, 2010
    Publication date: March 8, 2012
    Applicant: KNOWLES ELECTRONICS ASIA PTE. LTD.
    Inventors: Twan Van Lippen, Geert Langereis, Josef Lutz, Hilco Suy, Cas Van Der Avoort, Andreas Bernardus Maria Jansman
  • Publication number: 20120048709
    Abstract: The present invention provides a capacitive MEMS device comprising a first electrode lying in a plane, and a second electrode suspended above the first electrode and movable with respect to the first electrode. The first electrode functions as an actuation electrode. A gap is present between the first electrode and the second electrode. A third electrode is placed intermediate the first and second electrode with the gap between the third electrode and the second electrode. The third electrode has one or a plurality of holes therein, preferably in an orderly or irregular array. An aspect of the present invention integration of a conductive, e.g. metallic grating as a middle (or third) electrode. An advantage of the present invention is that it can reduce at least one problem of the prior art. This advantage allows an independent control over the pull-in and release voltage of a switch.
    Type: Application
    Filed: May 7, 2010
    Publication date: March 1, 2012
    Applicant: NXP B.V.
    Inventors: Peter Gerard Steeneken, Hilco Suy, Rodolf Herfst, Twan Van Lippen
  • Publication number: 20120033832
    Abstract: The invention relates to a method for manufacturing a micromachined microphone and an accelerometer from a wafer 1 having a first layer 2, the method comprising the steps of dividing the first layer 2 into a microphone layer 5 and into an accelerometer layer 6, covering a front side of the microphone layer 5 and a front side of the accelerometer layer 6 with a continuous second layer 7, covering the second layer 7 with a third layer 8, forming a plurality of trenches 9 in the third layer 8, removing a part 10 of the wafer 1 below a back side of the microphone layer 5, forming at least two wafer trenches 11 in the wafer 1 below a back side of the accelerometer layer 6, and removing a part 12, 13 of the second layer 7 through the plurality of trenches 9 formed in the third layer 8. The micromachined microphone and the accelerometer according to the invention is advantageous over prior art as it allows for body noise cancellation in order to minimize structure borne sound.
    Type: Application
    Filed: February 3, 2010
    Publication date: February 9, 2012
    Applicant: NXP B.V.
    Inventors: Twan van Lippen, Geert Langereis, Martijn Goossens
  • Publication number: 20110123043
    Abstract: A capacitive micro-electromechanical system (MEMS) microphone includes a semiconductor substrate having an opening that extends through the substrate. The microphone has a membrane that extends across the opening and a back-plate that extends across the opening. The membrane is configured to generate a signal in response to sound. The back-plate is separated from the membrane by an insulator and the back-plate exhibits a spring constant. The microphone further includes a back-chamber that encloses the opening to form a pressure chamber with the membrane, and a tuning structure configured to set a resonance frequency of the back-plate to a value that is substantially the same as a value of a resonance frequency of the membrane.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Franz Felberer, Remco Henricus Wilhelmus Pijnenburg, Twan Van Lippen, Iris Bominaar-Silkens
  • Publication number: 20110123052
    Abstract: A microphone and a method for manufacturing the same. The microphones includes a substrate die; and a microphone and an accelerometer formed from the substrate die. The accelerometer is adapted to provide a signal for compensating mechanical vibrations of the substrate die.
    Type: Application
    Filed: October 21, 2010
    Publication date: May 26, 2011
    Applicant: NXP B.V.
    Inventors: Iris BOMINAAR-SILKENS, Sima TARASHIOON, Remco Henricus Wilhelmus PIJNENBURG, Twan van LIPPEN, Geert LANGEREIS
  • Publication number: 20110003614
    Abstract: Proximity sensor, particularly for usage in an electronic mobile device, comprising at least one acoustic transducer adapted for receiving acoustic signals at least in parts of the frequency range of human audible sound and emitting and/or receiving ultrasonic signals for proximity estimation. The acoustic transducer preferably is a Micro-Electro-Mechanical-Systems (MEMS) microphone. Further, a method in an electronic device comprising an acoustic transducer is provided comprising the steps of generating at least one electric signal in the frequency range of ultrasonic sound, emitting at least one ultrasonic signal by means of the acoustic transducer; receiving at least one ultrasonic signal by means of the acoustic transducer; deducing from the at least one emitted ultrasonic signal and the at least one received ultrasonic signal at least the delay between emission of the emitted ultrasonic signal and reception of the corresponding ultrasonic signal.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicants: NXP B.V., KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Geert Langereis, Twan van Lippen, Peter Dirksen, Frank Pasveer