Patents by Inventor Tyler Lowrey

Tyler Lowrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7426135
    Abstract: A static random access memory may be formed using a bitline and a bitline bar coupled to ovonic threshold switches. The ovonic threshold switches may, in turn, be coupled to cross coupled NMOS transistors. In some embodiments, a very compact static random access memory may result.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 16, 2008
    Assignee: Ovonyx, Inc.
    Inventors: Tyler A Lowrey, Ward D. Parkinson
  • Publication number: 20080211636
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: October 25, 2007
    Publication date: September 4, 2008
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler A. Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Publication number: 20080210926
    Abstract: A three-dimensional phase-change memory array. In one embodiment of the invention, the memory array includes a first plurality of diodes, a second plurality of diodes disposed above the first plurality of diodes, a first plurality phase-change memory elements disposed above the first and second plurality of diodes and a second plurality of memory elements disposed above the first plurality of memory elements.
    Type: Application
    Filed: May 15, 2008
    Publication date: September 4, 2008
    Inventor: Tyler Lowrey
  • Patent number: 7414883
    Abstract: A memory may be implemented with a stable chalcogenide glass which is defined as a generally amorphous chalcogenide material that does not change to a generally crystalline phase when exposed to 200° C. for 30 minutes or less. Different states may be programmed by changing the threshold voltage of the material. The threshold voltage may be changed with pulses of different amplitude and/or different pulse fall times. Reading may be done using a reference level between the threshold voltages of the two different states. A separate access device is generally not needed.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: George A. Gordon, Ward D. Parkinson, John M. Peters, Tyler A. Lowrey, Stanford Ovshinsky, Guy C. Wicker, Ilya V. Karpov, Charles C. Kuo
  • Patent number: 7407829
    Abstract: A method of making an electrically programmable memory element, comprising: providing a first dielectric layer; forming a conductive material over the first dielectric layer; forming a second dielectric layer over the conductive material; and forming a programmable resistance material in electrical contact with a peripheral surface of the conductive material.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: August 5, 2008
    Assignee: Ovonyx, Inc.
    Inventors: Tyler Lowrey, Stanford R. Ovshinsky, Guy C. Wicker, Patrick J. Klersy, Boil Pashmakov, Wolodymyr Czubatyj, Sergey A. Kostylev
  • Patent number: 7391045
    Abstract: A three-dimensional phase-change memory array. In one embodiment of the invention, the memory array includes a first plurality of diodes, a second plurality of diodes disposed above the first plurality of diodes, a first plurality phase-change memory elements disposed above the first and second plurality of diodes and a second plurality of memory elements disposed above the first plurality of memory elements.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: June 24, 2008
    Assignee: Ovonyx, Inc.
    Inventor: Tyler Lowrey
  • Patent number: 7364937
    Abstract: A vertical elevated pore structure for a phase change memory may include a pore with a lower electrode beneath the pore contacting the phase change material in the pore. The lower electrode may be made up of a higher resistivity lower electrode and a lower resistivity lower electrode underneath the higher resistivity lower electrode. As a result, more uniform heating of the phase change material may be achieved in some embodiments and better contact may be made in some cases.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 29, 2008
    Assignee: Ovonyx, Inc.
    Inventor: Tyler Lowrey
  • Patent number: 7359227
    Abstract: A crosspoint memory includes a shared address line. The shared address line may be coupled to cells above and below the address line in one embodiment. Voltage biasing may be utilized to select one cell, and to deselect another cell. In this way, each cell may be made up of a selection device and a crosspoint memory element in the same orientation. This may facilitate manufacturing and reduce costs in some embodiments.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: April 15, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventors: Charles Dennison, Tyler Lowrey
  • Patent number: 7348620
    Abstract: Phase change memories may exhibit improved properties and lower cost in some cases by forming the phase change material layers in a planar configuration. A heater may be provided below the phase change material layers to appropriately heat the material to induce the phase changes. The heater may be coupled to an appropriate conductor.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: March 25, 2008
    Assignee: Ovonyx, Inc.
    Inventors: Chien Chiang, Charles Dennison, Tyler Lowrey
  • Publication number: 20080067492
    Abstract: A three-dimensional phase-change memory array. In one embodiment of the invention, the memory array includes a first plurality of diodes, a second plurality of diodes disposed above the first plurality of diodes, a first plurality phase-change memory elements disposed above the first and second plurality of diodes and a second plurality of memory elements disposed above the first plurality of memory elements.
    Type: Application
    Filed: September 18, 2006
    Publication date: March 20, 2008
    Inventor: Tyler Lowrey
  • Publication number: 20080067491
    Abstract: A lower electrode may be covered by a protective film to reduce the exposure of the lower electrode to subsequent processing steps or the open environment. As a result, materials that may have advantageous properties as lower electrodes may be utilized despite the fact that they may be sensitive to subsequent processing steps or the open environment.
    Type: Application
    Filed: November 20, 2007
    Publication date: March 20, 2008
    Inventor: Tyler Lowrey
  • Publication number: 20080064198
    Abstract: A semiconductor chalcogenide containing memory device may be formed with a dielectric in close juxtaposition to a chalcogenide alloy. Because the dielectric includes material interface regions, the thermal conductivity of the dielectric is reduced. As one result, heat transfer may be reduced, reducing the programming current required to program the chalcogenide alloy.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Inventors: Wolodymyr Czubatyj, Tyler Lowrey, Sergey Kostylev
  • Publication number: 20080054342
    Abstract: A method for forming a floating gate semiconductor device such as an electrically erasable programmable read only memory is provided. The device includes a silicon substrate having an electrically isolated active area. A gate oxide, as well as other components of a FET (e.g., source, drain) are formed in the active area. A self aligned floating gate is formed by depositing a conductive layer (e.g., polysilicon) into the recess and over the gate oxide. The conductive layer is then chemically mechanically planarized to an endpoint of the isolation layer so that all of the conductive layer except material in the recess and on the gate oxide is removed. Following formation of the floating gate an insulating layer is formed on the floating gate and a control gate is formed on the insulating layer.
    Type: Application
    Filed: November 1, 2007
    Publication date: March 6, 2008
    Inventors: Trung Doan, Tyler Lowrey
  • Publication number: 20080048167
    Abstract: A chalcogenide material and chalcogenide memory device having less stringent requirements for formation, improved thermal stability and/or faster operation. The chalcogenide materials include materials comprising Ge, Sb and Te in which the Ge and/or Te content is lean relative to the commonly used Ge2Sb2Te5 chalcogenide composition. Electrical devices containing the instant chalcogenide materials show a rapid convergence of the set resistance during cycles of setting and resetting the device from its as-fabricated state, thus leading to a reduced or eliminated need to subject the device to post-fabrication electrical formation prior to end-use operation. Improved thermal stability is manifested in terms of prolonged stability of the resistance of the device at elevated temperatures, which leads to an inhibition of thermally induced setting of the reset state in the device. Significant improvements in the 10 year data retention temperature are demonstrated.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 28, 2008
    Inventors: Sergey Kostylev, Tyler Lowrey, Guy Wicker, Wolodymyr Czubatyj
  • Publication number: 20080048832
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080048835
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 28, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll
  • Publication number: 20080042119
    Abstract: A multi-layer chalcogenide, memory or switching device. The device includes an active region disposed between a first terminal and a second terminal. The active region includes a first layer and a second layer, where one of the layers is a heterogeneous layer that includes an operational component and a promoter component. The other layer may be a homogeneous or heterogeneous layer. In exemplary embodiments, the operational component is a chalcogenide or phase change material and the promoter component is an insulating or dielectric material. Inclusion of the promoter component provides beneficial performance characteristics such as a reduction in reset current or minimization of formation requirements.
    Type: Application
    Filed: June 22, 2007
    Publication date: February 21, 2008
    Inventors: Regino Sandoval, Wolodymyr Czubatyj, Tyler Lowrey, Isamu Asano
  • Publication number: 20080035907
    Abstract: An electrical device includes a composite switching material. The composite switching material includes an electrically switchable component and a non-switchable component. In one embodiment, the composite switching material includes a heterogeneous mixture of at least one chalcogenide material and at least one dielectric material. The composite switching material is disposed between two electrodes and the switchable component is transformable from a resistive state to a conductive state upon application of a voltage between the two electrodes, without changing phase.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 14, 2008
    Applicant: Ovonyx, Inc.
    Inventors: Wolodymyr Czubatyj, Sergey Kostylev, Tyler Lowrey
  • Publication number: 20080032480
    Abstract: Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Application
    Filed: October 9, 2007
    Publication date: February 7, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fernando Gonzalez, Tyler Lowrey, Trung Doan, Raymond Turi, Graham Wolstenholme
  • Publication number: 20080030353
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: August 29, 2007
    Publication date: February 7, 2008
    Inventors: James O'Toole, John Tuttle, Mark Tuttle, Tyler Lowrey, Kevin Devereaux, George Pax, Brian Higgins, David Ovard, Shu-Sun Yu, Robert Rotzoll