Patents by Inventor Tze-Liang Lee

Tze-Liang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021476
    Abstract: In an embodiment, a device includes: a source/drain region over a semiconductor substrate; a dielectric layer over the source/drain region, the dielectric layer including a first dielectric material; an inter-layer dielectric over the dielectric layer, the inter-layer dielectric including a second dielectric material and an impurity, the second dielectric material different from the first dielectric material, a first portion of the inter-layer dielectric having a first concentration of the impurity, a second portion of the inter-layer dielectric having a second concentration of the impurity, the first concentration less than the second concentration; and a source/drain contact extending through the inter-layer dielectric and the dielectric layer to contact the source/drain region, the first portion of the inter-layer dielectric disposed between the source/drain contact and the second portion of the inter-layer dielectric.
    Type: Application
    Filed: January 6, 2023
    Publication date: January 18, 2024
    Inventors: Yu-Lien Huang, Tze-Liang Lee, Jr-Hung Li, Chun-Kai Chen
  • Publication number: 20240014125
    Abstract: A method of an interconnect structure includes the following steps. A first etching stop layer, a first dielectric layer, a second etching stop layer, an insert layer and a second dielectric layer are deposited over the second etching stop layer are deposited over a substrate. The second dielectric layer, the insert layer, the second etching stop layer, the first dielectric layer and the first etching stop layer are patterned thereby forming a trench opening and a via hole. A conductive feature is filled in the trench opening and the via hole thereby forming a conductive line in the second dielectric layer and the insert layer and a via in the first etching stop layer and the first dielectric layer. A material of the insert layer is different from the second dielectric layer and the second etching stop layer.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee
  • Patent number: 11854798
    Abstract: A method of forming a semiconductor device includes forming a mask layer over a substrate and forming an opening in the mask layer. A gap-filling material is deposited in the opening. A plasma treatment is performed on the gap-filling material. The height of the gap-filling material is reduced. The mask layer is removed. The substrate is patterned using the gap-filling material as a mask.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ching-Yu Chang, Jei Ming Chen, Tze-Liang Lee
  • Patent number: 11848231
    Abstract: A method for forming a semiconductor device structure is provided. The method includes successively forming a first multi-layer etch stop structure and an insulating layer over a first conductive feature. The insulating layer and the first multi-layer etch stop structure are successively etched to form an opening substantially aligned to the first conductive feature. A second conductive feature is formed in the opening. The formation of the first multi-layer etch stop structure and the second multi-layer etch stop structure includes forming a first metal-containing dielectric layer, forming a silicon-containing dielectric layer over the first metal-containing dielectric layer, and forming a second metal-containing dielectric layer over the silicon-containing dielectric layer. The second metal-containing dielectric layer has a material that is different from the material of the first metal-containing dielectric layer.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng Shih, Tze-Liang Lee, Jen-Hung Wang, Yu-Kai Lin, Su-Jen Sung
  • Publication number: 20230402321
    Abstract: A layer of carbon (e.g., graphite or graphene) at a metal interface (e.g., between an MEOL interconnect and a gate contact or a source or drain region contact, between an MEOL contact plug and a BEOL metallization layer, and/or between BEOL conductive structures) is used to reduce contact resistance at the metal interface, which increases electrical performance of an electronic device. Additionally, in some implementations, the layer of carbon may help prevent heat transfer from a second metal to a first metal when the second metal is deposited over the first metal. This results in more symmetric deposition of the second metal, which reduces surface roughness and contact resistance at the metal interface. As an alternative, in some implementations, the layer of carbon is etched before deposition of the second metal in order to reduce contact resistance at the metal interface.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Inventors: Po-Hsien CHENG, Chi-Ming YANG, Tze-Liang LEE
  • Patent number: 11842922
    Abstract: A method includes depositing a first dielectric layer over a first conductive feature, depositing a first mask layer over the first dielectric layer, and depositing a second mask layer over the first mask layer. A first opening is patterned in the first mask layer and the second mask layer, the first opening having a first width. A second opening is patterned in a bottom surface of the first opening, the second opening extending into the first dielectric layer, the second opening having a second width. The second width is less than the first width. The first opening is extended into the first dielectric layer and the second opening is extended through the first dielectric layer to expose a top surface of the first conductive feature.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Kai Chen, Jei Ming Chen, Tze-Liang Lee
  • Publication number: 20230395392
    Abstract: A method for manufacturing a semiconductor structure includes: forming a semiconductor device on a main region of the device substrate, the device substrate having a peripheral region surrounding the main region; forming a first filling layer on the peripheral region of the device substrate; forming a second filling layer over the first filling layer and the semiconductor device after forming the first filling layer, the second filling layer having a polishing rate different from that of the first filling layer; performing a planarization process over the second filling layer to remove a portion of the second filling layer so that a remaining portion of the second filling layer has a planarized surface opposite to the device substrate; and bonding the device substrate to a carrier substrate through the first filling layer and the remaining portion of the second filling layer.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Yu CHOU, Yen-Yu CHEN, Meng-Ku CHEN, Shiang-Bau WANG, Tze-Liang LEE
  • Publication number: 20230386826
    Abstract: A method includes placing a wafer into a process chamber, and depositing a silicon nitride layer on a base layer of the wafer. The process of depositing the silicon nitride layer includes introducing a silicon-containing precursor into the process chamber, purging the silicon-containing precursor from the process chamber, introducing hydrogen radicals into the process chamber, purging the hydrogen radicals from the process chamber; introducing a nitrogen-containing precursor into the process chamber, and purging the nitrogen-containing precursor from the process chamber.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Wei-Che Hsieh, Ching Yu Huang, Hsin-Hao Yeh, Chunyao Wang, Tze-Liang Lee
  • Publication number: 20230387012
    Abstract: Methods of forming vias for coupling source/drain regions to backside interconnect structures in semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a semiconductor device includes a conductive feature adjacent a gate structure; a dielectric layer on the conductive feature and the gate structure; a metal via embedded in the dielectric layer; and a liner layer between and in contact with the metal via and the dielectric layer, the liner layer being boron nitride.
    Type: Application
    Filed: August 15, 2022
    Publication date: November 30, 2023
    Inventors: Po-Hsien Cheng, Zhen-Cheng Wu, Tze-Liang Lee, Chi On Chui
  • Publication number: 20230387231
    Abstract: A method includes depositing a dielectric layer, depositing a plurality of mandrel strips over the dielectric layer, and forming a plurality of spacers on sidewalls of the plurality of mandrel strips to form a plurality of mask groups. Each of the plurality of mandrel strips and two of the plurality of spacers form a mask group in the plurality of mask groups. The method further includes forming a mask strip connecting two neighboring mask groups in the plurality of mask groups, using the plurality of mask groups and the mask strip collectively as an etching mask to etch the dielectric layer and to form trenches in the dielectric layer, and filling a conductive material into the trenches to form a plurality of conductive features.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Inventor: Tze-Liang Lee
  • Publication number: 20230386848
    Abstract: A method includes forming a dummy gate stack on a semiconductor fin, forming gate spacers on sidewalls of the dummy gate stack, forming a first inter-layer dielectric, with the gate spacers and the dummy gate stack being in the first inter-layer dielectric, removing the dummy gate stack to form a trench between the gate spacers, forming a replacement gate stack in the trench, and depositing a dielectric capping layer. A bottom surface of the dielectric capping layer contacts a first top surface of the replacement gate stack and a second top surface of the first inter-layer dielectric. A second inter-layer dielectric is deposited over the dielectric capping layer. A source/drain contact plug is formed and extends into the second inter-layer dielectric, the dielectric capping layer, and the first inter-layer dielectric.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pei-Yu Chou, Tze-Liang Lee
  • Publication number: 20230387228
    Abstract: A semiconductor device a method of forming the same are provided. A semiconductor device includes a gate stack over a substrate. A first dielectric layer is over the gate stack. The first dielectric layer includes a first material. A second dielectric layer is over the first dielectric layer. The second dielectric layer includes a second material different from the first material. A first conductive feature is adjacent the gate stack. A second conductive feature is over and in physical contact with a topmost surface of the first conductive feature. A bottommost surface of the second conductive feature is in physical contact with a topmost surface of the second dielectric layer.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 30, 2023
    Inventors: Pei-Yu Chou, Jr-Hung Li, Tze-Liang Lee
  • Publication number: 20230383403
    Abstract: A deposition apparatus and a method are provided. A method includes placing a substrate over a platform in a chamber of a deposition system. A precursor material is introduced into the chamber. A first gas curtain is generated in front of a first electromagnetic (EM) radiation source coupled to the chamber. A plasma is generated from the precursor material in the chamber, wherein the plasma comprises dissociated components of the precursor material. The plasma is subjected to a first EM radiation from the first EM radiation source. The first EM radiation further dissociates the precursor material. A layer is deposited over the substrate. The layer includes a reaction product of the dissociated components of the precursor material.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Tze-Liang Lee, Po-Hsien Cheng
  • Publication number: 20230387304
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Eric PENG, Chao-Cheng CHEN, Chii-Horng LI, Ming-Hua YU, Shih-Hao LO, Syun-Ming JANG, Tze-Liang LEE, Ying-Hao HSIEH
  • Patent number: 11830727
    Abstract: A method includes placing a wafer into a process chamber, and depositing a silicon nitride layer on a base layer of the wafer. The process of depositing the silicon nitride layer includes introducing a silicon-containing precursor into the process chamber, purging the silicon-containing precursor from the process chamber, introducing hydrogen radicals into the process chamber, purging the hydrogen radicals from the process chamber; introducing a nitrogen-containing precursor into the process chamber, and purging the nitrogen-containing precursor from the process chamber.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Che Hsieh, Ching Yu Huang, Hsin-Hao Yeh, Chunyao Wang, Tze-Liang Lee
  • Publication number: 20230378361
    Abstract: A device includes a fin structure, a gate structure, a first source/drain epitaxial structure and, a second source/drain epitaxial structure. The fin structure over a substrate and includes a bottom portion protruding from the substrate and a top portion over the bottom portion. An interface between the bottom portion and the top portion comprises oxygen and has an oxygen concentration lower than about 1.E+19 atoms/cm3. The gate structure covers the fin structure. The first source/drain epitaxial structure and the second source/drain epitaxial structure are over the top portion of the fin structure and on opposite sides of the gate structure.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 23, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Yu LIN, Ming-Hua YU, Tze-Liang LEE, Chan-Lon YANG
  • Publication number: 20230375920
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Patent number: 11824120
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Eric Peng, Chao-Cheng Chen, Chii-Horng Li, Ming-Hua Yu, Shih-Hao Lo, Syun-Ming Jang, Tze-Liang Lee, Ying-Hao Hsieh
  • Patent number: 11822237
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Hui Weng, Chen-Yu Liu, Chih-Cheng Liu, Yi-Chen Kuo, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Publication number: 20230369048
    Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Jia-Lin WEI, Ming-Hui Weng, Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Yahru Cheng, Jr-Hung Li, Ching-Yu Chang, Tze-Liang Lee, Chi-Ming Yang