Patents by Inventor Tzu-Chen Lin

Tzu-Chen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210366774
    Abstract: A semiconductor device includes several first cell rows extending in a first direction, each of the first cell rows having a first row height; several second cell rows extending in the first direction, each of the second cell rows having a second row height smaller than the first row height, wherein the first cell rows and the second cell rows are interlaced; a first cell arranged in a first row of the first cell rows; and at least one second cell arranged in at least one row of the second cell rows, wherein the at least one second cell abuts the first cell in a second direction different from the first direction, wherein the at least one second cell and at least one circuit component included in the first cell have the same operation configuration.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jerry Chang-Jui KAO, Hui-Zhong ZHUANG, Li-Chung HSU, Sung-Yen YEH, Yung-Chen CHIEN, Jung-Chan YANG, Tzu-Ying LIN
  • Publication number: 20210358750
    Abstract: A semiconductor device and method of manufacturing using carbon nanotubes are provided. In embodiments a stack of nanotubes are formed and then a non-destructive removal process is utilized to reduced the thickness of the stack of nanotubes. A device such as a transistor may then be formed from the reduced stack of nanotubes.
    Type: Application
    Filed: October 15, 2020
    Publication date: November 18, 2021
    Inventors: Tzu-Ang Chao, Gregory Michael Pitner, Tse-An Chen, Lain-Jong Li, Yu Chao Lin
  • Publication number: 20210357806
    Abstract: A machine learning model training method includes receiving a problem type to be processed, determining a machine learning model corresponding to the problem type, receiving sample data to train the determined machine learning model, analyzing training results of the determined machine learning model obtained after training is completed and displaying the training results that meet preset conditions, and providing a machine learning model corresponding to the training result that meets the preset conditions.
    Type: Application
    Filed: September 18, 2020
    Publication date: November 18, 2021
    Inventors: GUO-CHIN SUN, TUNG-TSO TSAI, TZU-CHEN LIN, WAN-JHEN LEE, CHIN-PIN KUO
  • Publication number: 20210326641
    Abstract: A method for selecting a deep learning network which is optimal for solving an image processing task obtaining a type of the image processing task, selecting a data set according to the type of problem, and dividing selected data set into training data and test data. Similarities between different training data are calculated, and a batch size of the training data is adjusted according to the similarities of the training data. A plurality of deep learning networks is selected according to the type of problem, and the plurality of deep learning networks is trained through the training data to obtain network models. Each of the network models is tested through the test data, and the optimal deep learning network with the best test result is selected from the plurality of deep learning networks appropriate for image processing.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 21, 2021
    Inventors: TUNG-TSO TSAI, CHIN-PIN KUO, GUO-CHIN SUN, TZU-CHEN LIN, WAN-JHEN LEE
  • Publication number: 20210089886
    Abstract: A method for processing data based on a neural network trained by different methods includes: dividing sample data into a training set and a test set; training a predetermined neural network to obtain a first detection model based on the training set; testing the first detection model based on the test set to count a first precision rate; cleaning the training set and the test set according to selected cleaning method; adjusting the first detection model by a predetermined rule and training adjusted first detection model based on cleaned training set to obtain a second detection model; testing the second detection model based on cleaned test set to count a second precision rate; selecting the first detection model or the second detection model as a final detection model based on a comparison between the first precision rate and the second precision rate.
    Type: Application
    Filed: March 23, 2020
    Publication date: March 25, 2021
    Inventors: TZU-CHEN LIN, TUNG-TSO TSAI, GUO-CHIN SUN, CHIN-PIN KUO, WAN-JHEN LEE
  • Publication number: 20210012485
    Abstract: A method for detecting a tumor from images which are required to be shrunken in resolution obtains one or more first images. Then, the method segments or divides the detection images into a number of detection image blocks according to an input size of training data of a convolutional neural network architecture, before segmenting, each of the plurality of detection image blocks comprising coordinate values. The detection image blocks are input into a preset tumor detection model to generate image blocks of a result of the detection images. The method merges the image blocks into a single image according to the coordinate values of each detection image block. Colors of normal areas, abnormal areas, and overlapping areas of the abnormal areas are all different. The method generates a final detection according to color depths in the image. A tumor detection device and a non-transitory storage medium are provided.
    Type: Application
    Filed: February 12, 2020
    Publication date: January 14, 2021
    Inventors: TZU-CHEN LIN, CHIN-PIN KUO, TUNG-TSO TSAI, GUO-CHIN SUN, I-HUA CHEN, WAN-JHEN LEE
  • Publication number: 20200410356
    Abstract: A method for optimizing a data model is used in a device. The device acquires data information and selecting at least two data models according to the data information, and utilizes the data information to train the at least two data models. The device acquires each accuracy of the at least two data models, determines a target data model which has greatest accuracy between the at least two data models, and optimizes the target data model.
    Type: Application
    Filed: March 6, 2020
    Publication date: December 31, 2020
    Inventors: CHIN-PIN KUO, TUNG-TSO TSAI, GUO-CHIN SUN, TZU-CHEN LIN, WAN-JHEN LEE
  • Publication number: 20200320316
    Abstract: A method for assisting a driver to drive a vehicle in a safer manner includes capturing images of road in front of the vehicle, and identifying a traffic sign in the images. A first image frame is captured at a first time and a second image frame is captured at a later second time when the images do comprise the traffic sign. A change in size or other apparent change of the traffic sign from the first image frame to the second image frame is determined, and conformity or non-conformity with a predetermined rule is then determined. The traffic sign can be analyzed and recognized to trigger the vehicle to perform an action accordingly when conformity is found. A device providing assistance with driving is also provided.
    Type: Application
    Filed: March 19, 2020
    Publication date: October 8, 2020
    Inventors: JUNG-YI LIN, CHUNG-YU WU, TZU-CHEN LIN
  • Publication number: 20200280263
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit, for generating a switching signal to control a primary side switch; and a secondary side controller circuit, for generating a synchronous rectifier (SR) control signal to control a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The primary side controller circuit determines a trigger timing point of the switching signal according to a first waveform characteristic of a ringing signal, to control the primary side switch to be ON. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a second waveform characteristic of the ringing signal, to control the synchronous rectifier switch to be ON for a predetermined ZVS time period, thereby achieving zero voltage switching of the primary side switch.
    Type: Application
    Filed: December 2, 2019
    Publication date: September 3, 2020
    Inventor: Tzu-Chen Lin
  • Patent number: 10715028
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: July 14, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tzu-Chen Lin, Kun-Yu Lin, Li-Di Lo, Wei-Hsu Chang
  • Publication number: 20200153327
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
    Type: Application
    Filed: September 28, 2019
    Publication date: May 14, 2020
    Inventors: Tzu-Chen Lin, Kun-Yu Lin, Li-Di Lo, Wei-Hsu Chang
  • Patent number: 10566893
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller circuit, a secondary side controller circuit, and a pulse transformer. In one switching cycle, a synchronous rectifier transistor is turned ON twice to generate a circulation current at the primary side winding, and after the synchronous rectifier transistor is turned OFF, the power transistor is turned ON for zero voltage switching. A synchronous signal coupled between the primary side and the secondary side is employed to synchronize the power transistor and the synchronous transistor. The synchronous signal also triggers an SR-ZVS pulse to turn ON the synchronous rectifier transistor for achieving the zero voltage switching when the power transistor is turned ON.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: February 18, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Li-Di Luo, Pei-Sheng Tsu
  • Patent number: 10560012
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller and a secondary side controller. The primary side controller generates a switching signal to control a power transformer through a power transistor to generate an output voltage. The secondary side controller generates an SR (synchronous rectifier) signal to control an SR transistor at a secondary side of the power transformer. The SR signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the SR transistor according to a demagnetizing period of the power transformer. The ZVS pulse determines the starting timing of the switching signal to achieve zero voltage switching for the power transistor. The secondary side controller generates the ZVS pulse after a delay time from when the power transformer is demagnetized. The delay time is determined according to an output load of the output voltage.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: February 11, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Chien-Fu Tang
  • Publication number: 20200036280
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller and a secondary side controller. The primary side controller generates a switching signal to control a power transformer through a power transistor to generate an output voltage. The secondary side controller generates an SR (synchronous rectifier) signal to control an SR transistor at a secondary side of the power transformer. The SR signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the SR transistor according to a demagnetizing period of the power transformer. The ZVS pulse determines the starting timing of the switching signal to achieve zero voltage switching for the power transistor. The secondary side controller generates the ZVS pulse after a delay time from when the power transformer is demagnetized. The delay time is determined according to an output load of the output voltage.
    Type: Application
    Filed: January 14, 2019
    Publication date: January 30, 2020
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Chien-Fu Tang
  • Publication number: 20190149032
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller circuit, a secondary side controller circuit, and a pulse transformer. In one switching cycle, a synchronous rectifier transistor is turned ON twice to generate a circulation current at the primary side winding, and after the synchronous rectifier transistor is turned OFF, the power transistor is turned ON for zero voltage switching. A synchronous signal coupled between the primary side and the secondary side is employed to synchronize the power transistor and the synchronous transistor. The synchronous signal also triggers an SR-ZVS pulse to turn ON the synchronous rectifier transistor for achieving the zero voltage switching when the power transistor is turned ON.
    Type: Application
    Filed: September 18, 2018
    Publication date: May 16, 2019
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Li-Di Luo, Pei-Sheng Tsu
  • Patent number: 10291137
    Abstract: A flyback power converter includes a transformer having an auxiliary winding for generating an auxiliary voltage and providing a supply voltage on a supply node; a primary side controller circuit which is powered by the supply voltage from the supply node; and a high voltage (HV) start-up circuit. The HV start-up circuit is coupled to an high voltage signal through a HV input terminal and generates the supply voltage through a supply output terminal, wherein when the supply voltage does not exceed a start-up voltage threshold, a HV start-up switch conducts the HV input terminal and the supply output terminal to provide the supply voltage, and when the supply voltage exceeds a start-up voltage threshold, the HV start-up switch is OFF. The HV start-up circuit and the primary side controller circuit are packaged in two separate integrated circuit packages respectively.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: May 14, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Tzu-Chen Lin, Kun-Yu Lin, Li-Yang Hsiao, Yung-Chih Lai
  • Publication number: 20190140547
    Abstract: The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin
  • Patent number: 10218280
    Abstract: The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 26, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin
  • Publication number: 20190028033
    Abstract: A flyback power converter includes a transformer having an auxiliary winding for generating an auxiliary voltage and providing a supply voltage on a supply node; a primary side controller circuit which is powered by the supply voltage from the supply node; and a high voltage (HV) start-up circuit. The HV start-up circuit is coupled to an high voltage signal through a HV input terminal and generates the supply voltage through a supply output terminal, wherein when the supply voltage does not exceed a start-up voltage threshold, a HV start-up switch conducts the HV input terminal and the supply output terminal to provide the supply voltage, and when the supply voltage exceeds a start-up voltage threshold, the HV start-up switch is OFF. The HV start-up circuit and the primary side controller circuit are packaged in two separate integrated circuit packages respectively.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 24, 2019
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Tzu-Chen Lin, Kun-Yu Lin, Li-Yang Hsiao, Yung-Chih Lai
  • Patent number: 10181782
    Abstract: A flyback power converter circuit includes: a transformer including a primary side winding coupled to an input power and a secondary side winding coupled to an output node, wherein the input power includes an input voltage; a primary side switch coupled to the primary side winding for controlling the input power to generate an output power on the output node through the secondary side winding, wherein the output power includes an output voltage; a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel; and a conversion control circuit for adjusting an ON time of the auxiliary switch according to at least one of a current related signal, the input voltage, and the output voltage, such that the primary side switch is zero voltage switching when turning ON.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: January 15, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang