Patents by Inventor Tzu-Chen Lin

Tzu-Chen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200320316
    Abstract: A method for assisting a driver to drive a vehicle in a safer manner includes capturing images of road in front of the vehicle, and identifying a traffic sign in the images. A first image frame is captured at a first time and a second image frame is captured at a later second time when the images do comprise the traffic sign. A change in size or other apparent change of the traffic sign from the first image frame to the second image frame is determined, and conformity or non-conformity with a predetermined rule is then determined. The traffic sign can be analyzed and recognized to trigger the vehicle to perform an action accordingly when conformity is found. A device providing assistance with driving is also provided.
    Type: Application
    Filed: March 19, 2020
    Publication date: October 8, 2020
    Inventors: JUNG-YI LIN, CHUNG-YU WU, TZU-CHEN LIN
  • Publication number: 20200280263
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit, for generating a switching signal to control a primary side switch; and a secondary side controller circuit, for generating a synchronous rectifier (SR) control signal to control a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The primary side controller circuit determines a trigger timing point of the switching signal according to a first waveform characteristic of a ringing signal, to control the primary side switch to be ON. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a second waveform characteristic of the ringing signal, to control the synchronous rectifier switch to be ON for a predetermined ZVS time period, thereby achieving zero voltage switching of the primary side switch.
    Type: Application
    Filed: December 2, 2019
    Publication date: September 3, 2020
    Inventor: Tzu-Chen Lin
  • Patent number: 10715028
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: July 14, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tzu-Chen Lin, Kun-Yu Lin, Li-Di Lo, Wei-Hsu Chang
  • Publication number: 20200153327
    Abstract: A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
    Type: Application
    Filed: September 28, 2019
    Publication date: May 14, 2020
    Inventors: Tzu-Chen Lin, Kun-Yu Lin, Li-Di Lo, Wei-Hsu Chang
  • Patent number: 10566893
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller circuit, a secondary side controller circuit, and a pulse transformer. In one switching cycle, a synchronous rectifier transistor is turned ON twice to generate a circulation current at the primary side winding, and after the synchronous rectifier transistor is turned OFF, the power transistor is turned ON for zero voltage switching. A synchronous signal coupled between the primary side and the secondary side is employed to synchronize the power transistor and the synchronous transistor. The synchronous signal also triggers an SR-ZVS pulse to turn ON the synchronous rectifier transistor for achieving the zero voltage switching when the power transistor is turned ON.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: February 18, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Li-Di Luo, Pei-Sheng Tsu
  • Patent number: 10560012
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller and a secondary side controller. The primary side controller generates a switching signal to control a power transformer through a power transistor to generate an output voltage. The secondary side controller generates an SR (synchronous rectifier) signal to control an SR transistor at a secondary side of the power transformer. The SR signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the SR transistor according to a demagnetizing period of the power transformer. The ZVS pulse determines the starting timing of the switching signal to achieve zero voltage switching for the power transistor. The secondary side controller generates the ZVS pulse after a delay time from when the power transformer is demagnetized. The delay time is determined according to an output load of the output voltage.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: February 11, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Chien-Fu Tang
  • Publication number: 20200036280
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller and a secondary side controller. The primary side controller generates a switching signal to control a power transformer through a power transistor to generate an output voltage. The secondary side controller generates an SR (synchronous rectifier) signal to control an SR transistor at a secondary side of the power transformer. The SR signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the SR transistor according to a demagnetizing period of the power transformer. The ZVS pulse determines the starting timing of the switching signal to achieve zero voltage switching for the power transistor. The secondary side controller generates the ZVS pulse after a delay time from when the power transformer is demagnetized. The delay time is determined according to an output load of the output voltage.
    Type: Application
    Filed: January 14, 2019
    Publication date: January 30, 2020
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Chien-Fu Tang
  • Publication number: 20190149032
    Abstract: A ZVS (zero voltage switching) control circuit for use in a flyback power converter includes a primary side controller circuit, a secondary side controller circuit, and a pulse transformer. In one switching cycle, a synchronous rectifier transistor is turned ON twice to generate a circulation current at the primary side winding, and after the synchronous rectifier transistor is turned OFF, the power transistor is turned ON for zero voltage switching. A synchronous signal coupled between the primary side and the secondary side is employed to synchronize the power transistor and the synchronous transistor. The synchronous signal also triggers an SR-ZVS pulse to turn ON the synchronous rectifier transistor for achieving the zero voltage switching when the power transistor is turned ON.
    Type: Application
    Filed: September 18, 2018
    Publication date: May 16, 2019
    Inventors: Ta-Yung Yang, Tzu-Chen Lin, Li-Di Luo, Pei-Sheng Tsu
  • Patent number: 10291137
    Abstract: A flyback power converter includes a transformer having an auxiliary winding for generating an auxiliary voltage and providing a supply voltage on a supply node; a primary side controller circuit which is powered by the supply voltage from the supply node; and a high voltage (HV) start-up circuit. The HV start-up circuit is coupled to an high voltage signal through a HV input terminal and generates the supply voltage through a supply output terminal, wherein when the supply voltage does not exceed a start-up voltage threshold, a HV start-up switch conducts the HV input terminal and the supply output terminal to provide the supply voltage, and when the supply voltage exceeds a start-up voltage threshold, the HV start-up switch is OFF. The HV start-up circuit and the primary side controller circuit are packaged in two separate integrated circuit packages respectively.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: May 14, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Tzu-Chen Lin, Kun-Yu Lin, Li-Yang Hsiao, Yung-Chih Lai
  • Publication number: 20190140547
    Abstract: The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin
  • Patent number: 10218280
    Abstract: The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 26, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin
  • Publication number: 20190028033
    Abstract: A flyback power converter includes a transformer having an auxiliary winding for generating an auxiliary voltage and providing a supply voltage on a supply node; a primary side controller circuit which is powered by the supply voltage from the supply node; and a high voltage (HV) start-up circuit. The HV start-up circuit is coupled to an high voltage signal through a HV input terminal and generates the supply voltage through a supply output terminal, wherein when the supply voltage does not exceed a start-up voltage threshold, a HV start-up switch conducts the HV input terminal and the supply output terminal to provide the supply voltage, and when the supply voltage exceeds a start-up voltage threshold, the HV start-up switch is OFF. The HV start-up circuit and the primary side controller circuit are packaged in two separate integrated circuit packages respectively.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 24, 2019
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Tzu-Chen Lin, Kun-Yu Lin, Li-Yang Hsiao, Yung-Chih Lai
  • Patent number: 10181782
    Abstract: A flyback power converter circuit includes: a transformer including a primary side winding coupled to an input power and a secondary side winding coupled to an output node, wherein the input power includes an input voltage; a primary side switch coupled to the primary side winding for controlling the input power to generate an output power on the output node through the secondary side winding, wherein the output power includes an output voltage; a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel; and a conversion control circuit for adjusting an ON time of the auxiliary switch according to at least one of a current related signal, the input voltage, and the output voltage, such that the primary side switch is zero voltage switching when turning ON.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: January 15, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang
  • Patent number: 10177670
    Abstract: A flyback power converter circuit includes: a transformer including a primary winding coupled to an input power and a secondary winding coupled to an output node, a primary side switch controlling the primary side winding to convert the input power to an output power on the output node through the secondary side winding, a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel, and a conversion control circuit for adjusting an auxiliary ON time of the auxiliary switch during an OFF time of the primary side switch according to an estimated parasitic diode conduction time of a parasitic diode of the auxiliary switch; the auxiliary ON time is controlled to be substantially equal to and coincides with the estimated parasitic diode conduction time.
    Type: Grant
    Filed: April 28, 2018
    Date of Patent: January 8, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tzu-Chen Lin, Kun-Yu Lin
  • Patent number: 10170923
    Abstract: An adaptive buck converter of a charging cable includes: a power receiving interface for receiving a DC voltage and a cable current from a cable; a terminal communication interface for transmitting a charging voltage and a charging current to a connection terminal of the charging cable and for receiving a communication signal generated by a mobile device from the connection terminal; a power converting circuit for receiving the DC voltage and the cable current from the power receiving interface and for generating the charging voltage and the charging current; a monitor circuit arranged to operably detect the DC voltage or the cable current; and a data processing circuit configured for controlling the power converting circuit according to the communication signal. The data processing circuit further communicates with the mobile device through the terminal communication interface and the connection terminal in response to a detection result of the monitor circuit.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 1, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Jing-Meng Liu, Isaac Y. Chen, Tzu-Chen Lin
  • Patent number: 10171001
    Abstract: An AC-to-DC power converter includes a rectifier for generating a rectified voltage based on an AC voltage; an input capacitor coupled between the rectifier and a fixed-voltage terminal; a first inductive element; a first auxiliary capacitor; a first switch coupled between the input capacitor and the first inductive element; a second switch coupled between the first inductive element and the fixed-voltage terminal; a circuitry node; an auxiliary switch for coupling between the circuitry node and the first auxiliary capacitor or between the first auxiliary capacitor and the fixed-voltage terminal; a first diode; a second diode; a control signal generating circuit for controlling the first switch and the second switch; and an auxiliary switch control circuit for controlling the auxiliary switch.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: January 1, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chang-Yu Wu, Tzu-Chen Lin
  • Patent number: 10153703
    Abstract: The present invention provides a flyback power converter with a programmable output and a control circuit and a control method thereof. The flyback power converter converts an input voltage to a programmable output voltage according to a setting signal, wherein the programmable output voltage switches between different levels. The flyback power converter includes: a transformer circuit, a power switch circuit, a current sense circuit, an opto-coupler circuit, and a control circuit. The control circuit adaptively adjusts an operation signal according to a level of the programmable output voltage, to maintain a same or relatively higher operation frequency of the operation signal when the programmable output voltage switches to a relatively lower level, so as to maintain a phase margin while supplying the same output current.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: December 11, 2018
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuang-Fu Chang, Tzu-Chen Lin, Chien-Fu Tang
  • Publication number: 20180301975
    Abstract: A flyback power converter circuit includes: a transformer including a primary side winding coupled to an input power and a secondary side winding coupled to an output node, wherein the input power includes an input voltage; a primary side switch coupled to the primary side winding for controlling the input power to generate an output power on the output node through the secondary side winding, wherein the output power includes an output voltage; a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel; and a conversion control circuit for adjusting an ON time of the auxiliary switch according to at least one of a current related signal, the input voltage, and the output voltage, such that the primary side switch is zero voltage switching when turning ON.
    Type: Application
    Filed: February 9, 2018
    Publication date: October 18, 2018
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang
  • Publication number: 20180301974
    Abstract: A flyback power converter circuit includes: a transformer, including a primary winding coupled to an input power and a secondary winding coupled to an output node; a primary side switch coupled to the primary winding for switching the input power to generate an output power on the output node through the secondary winding; a clamping circuit including an auxiliary switch and an auxiliary capacitor which are connected in series to form an auxiliary branch which is connected with the primary winding in parallel; and a conversion control circuit adjusting an auxiliary dead time according to a primary side switch related signal and a switching voltage related signal such that the primary side switch is zero voltage switching at a time point when the primary side switch is turned ON.
    Type: Application
    Filed: January 24, 2018
    Publication date: October 18, 2018
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang
  • Patent number: 10103616
    Abstract: A flyback power converter circuit includes: a transformer, including a primary winding coupled to an input power and a secondary winding coupled to an output node; a primary side switch coupled to the primary winding for switching the input power to generate an output power on the output node through the secondary winding; a clamping circuit including an auxiliary switch and an auxiliary capacitor which are connected in series to form an auxiliary branch which is connected with the primary winding in parallel; and a conversion control circuit adjusting an auxiliary dead time according to a primary side switch related signal and a switching voltage related signal such that the primary side switch is zero voltage switching at a time point when the primary side switch is turned ON.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 16, 2018
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Wei-Hsu Chang, Ta-Yung Yang