Patents by Inventor Tzu-Chieh Lin

Tzu-Chieh Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210004694
    Abstract: An IoT system includes a computing module for controlling an integral function of the system and including an analysis unit and a machine learning unit. The analysis unit is capable of operational analysis and creating a predictive model and creating a predictive model according to the data analyzed. The machine learning unit has an algorithm function to create a corresponding learning model. An IoT module is electrically connected to the computing module to serve as an intermediate role. At least one detection unit is electrically connected to the IoT module and disposed in soil to detect data of environmental and soil conditions and sends the data detected to the computing module for subsequent analysis.
    Type: Application
    Filed: October 20, 2019
    Publication date: January 7, 2021
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Wen-Liang Chen, Lung-Chieh Chen, Szu-Chia Chen, Wei-Han Chen, Chun-Yu Chu, Yu-Chi Shih, Yu-Ci Chang, Tzu-I Hsieh, Yen-Ling Chen, Li-Chi Peng, Meng-Zhan Lee, Jui-Yu Ho, Chi-Yao Ku, Nian-Ruei Deng, Yuan-Yao Chan, Erick Wang, Tai-Hsiang Yen, Shao-Yu Chiu, Jiun-Yi Lin, Yun-Wei Lin, Fung Ling Ng, Yi-Bing Lin, Chin-Cheng Wang
  • Publication number: 20200379323
    Abstract: A lens includes a casing, a first lens group, a second lens group and a heat dissipating member. The first lens group is disposed in the casing and close to a first side of the casing. The second lens group is disposed in the casing and close to a second side of the casing, wherein the first side is opposite to the second side. The heat dissipating member is disposed at the second side of the casing and contacts the casing.
    Type: Application
    Filed: April 26, 2020
    Publication date: December 3, 2020
    Inventors: Chien-Hung Lin, Tzu-Huan Hsu, Sheng-Wen Hu, Hsin-Jung Yeh, Chih-Chieh Tsung
  • Publication number: 20200350113
    Abstract: A coil module is provided, including a second coil mechanism. The second coil mechanism includes a third coil assembly and a second base corresponding to the third coil assembly. The second base has a positioning assembly corresponding to a first coil mechanism.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Feng-Lung CHIEN, Tsang-Feng WU, Yuan HAN, Tzu-Chieh KAO, Chien-Hung LIN, Kuang-Lun LEE, Hsiang-Hui HSU, Shu-Yi TSUI, Kuo-Jui LEE, Kun-Ying LEE, Mao-Chun CHEN, Tai-Hsien YU, Wei-Yu CHEN, Yi-Ju LI, Kuei-Yuan CHANG, Wei-Chun LI, Ni-Ni LAI, Sheng-Hao LUO, Heng-Sheng PENG, Yueh-Hui KUAN, Hsiu-Chen LIN, Yan-Bing ZHOU, Chris T. Burket
  • Patent number: 10803566
    Abstract: The disclosure provides a method for dynamically adjusting image clarity and an image processing device using the same method. The method includes: retrieving an image frame and searching for a predetermined object therein; evaluating a first sharpness of the predetermined object; if the first sharpness of the predetermined object is lower than a sharpness threshold, calculating a difference value between the first sharpness and the sharpness threshold; dividing the image frame into blocks and evaluating a risk value and an effect value of increasing a second sharpness of each block; inputting the difference value, the risk value, and the effect value to a classifying model to generate a clarity setting value; and adjusting a clarity of a display on showing the image frame based on the clarity setting value.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: October 13, 2020
    Assignee: Acer Incorporated
    Inventors: Tzu-Chieh Lin, Chen-Kang Su
  • Patent number: 10785898
    Abstract: A casing includes a substrate, a protective layer, a plurality of conductive shielding components and a plurality of waterproof layers. The substrate has a first surface and a second surface. The protective layer encapsulates the first surface and the second surface, wherein the protective layer has a plurality of openings and a part of the first surface is exposed from the openings. The conductive shielding components contact the protective layer encapsulating the first surface, and the conductive shielding components respectively cover the openings. The waterproof layers respectively cover edges of the conductive shielding components and contact the protective layer. A manufacturing method of casing is also provided.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: September 22, 2020
    Assignee: Acer Incorporated
    Inventors: Wen-Hsin Lin, Tzu-Wei Lin, Cheng-Nan Ling, Wen-Chieh Tai
  • Publication number: 20200274022
    Abstract: A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Hsin-Chih Chiu, Chih-Chiang Lu, Chun-Yu Lin, Ching-Huai Ni, Yi-Ming Chen, Tzu-Chieh Hsu, Ching-Pei Lin
  • Publication number: 20200249434
    Abstract: An optical photographing lens assembly includes seven lens elements which are, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. Each of the seven lens elements of the optical photographing lens assembly has an object-side surface facing toward the object side and an image-side surface facing toward the image side. The object-side surface of the first lens element is concave in a paraxial region thereof. The object-side surface of the first lens element is aspheric and has at least one critical point in an off-axis region thereof.
    Type: Application
    Filed: March 8, 2019
    Publication date: August 6, 2020
    Applicant: LARGAN PRECISION CO.,LTD.
    Inventors: Cheng-Chen LIN, Yu-Tai TSENG, Tzu-Chieh KUO
  • Publication number: 20200227264
    Abstract: A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Tzu-Hao Liu, Yi-Wei Chen, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Po-Chih Wu, Pin-Hong Chen, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chien Liu, Chih-Chieh Tsai, Ji-Min Lin
  • Publication number: 20200174226
    Abstract: An optical imaging lens assembly includes three lens elements which are, in order from an object side to an image side: a first lens element, a second lens element and a third lens element. Each of the three lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side. The object-side surface of the first lens element is concave in a paraxial region thereof. The object-side surface of the first lens element is aspheric and has at least one inflection point. The object-side surface of the first lens element has at least one critical point in an off-axis region thereof. The optical imaging lens assembly has a total of three lens elements.
    Type: Application
    Filed: January 23, 2019
    Publication date: June 4, 2020
    Applicant: LARGAN PRECISION CO.,LTD.
    Inventors: Yu Jui LIN, Tzu-Chieh KUO
  • Patent number: 10651040
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a titanium nitride (TiN) layer on a silicon layer; performing a first treatment process by reacting the TiN layer with dichlorosilane (DCS) to form a titanium silicon nitride (TiSiN) layer; forming a conductive layer on the TiSiN layer; and patterning the conductive layer, the metal silicon nitride layer, and the silicon layer to form a gate structure.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 12, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Tzu-Hao Liu, Yi-Wei Chen, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Po-Chih Wu, Pin-Hong Chen, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chien Liu, Chih-Chieh Tsai, Ji-Min Lin
  • Patent number: 10651335
    Abstract: A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: May 12, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Hsin-Chih Chiu, Chih-Chiang Lu, Chun-Yu Lin, Ching-Huai Ni, Yi-Ming Chen, Tzu-Chieh Hsu, Ching-Pei Lin
  • Patent number: 10620097
    Abstract: A biological sample processing device includes a base, a purification unit, a metering unit and a first tube. The purification unit is disposed on the base and is configured to purify a sample. The metering unit is disposed on the base and has an inlet, at least one metering trough and an overflow trough. The inlet is connected to the purification unit via the first tube, and the metering trough is connected between the inlet and the overflow trough. The sample from the purification unit is configured to enter the metering unit through the inlet to be moved toward the metering trough, and to be moved toward the overflow trough after the metering trough is filled with the sample.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: April 14, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-An Chen, Wen-Ching Lee, Tzu-Hui Wu, Pei-Shin Jiang, Ping-Jung Wu, Ruey-Shyan Hong, Hsiao-Jou Chang, Chun-Chieh Huang, Ting-Hsuan Chen, Chih-Lung Lin
  • Patent number: 10613397
    Abstract: The invention provides an alternative liquid crystal and light emitting display which include at least one Transparent Conductive Oxide layers which comprises a zinc oxide doped with a group III, IV, V, or transition metal dopant, and sputtered from a sputtering target. In a further embodiment, this Transparent Conductive Oxide layer can optionally include a layer of a patternable TCO, such as ITO.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 7, 2020
    Assignee: SCI ENGINEERED MATERIALS, INC.
    Inventors: Robert McGinnis, Jing Yang, Tzu-Chieh Lin
  • Patent number: 10616568
    Abstract: A VST-HMD (Video See-Through Head Mounted Display) includes at least one camera, a first display device, a second display device, a first lens, a second lens, a first eye tracker, a second eye tracker, and a processor. The camera captures environmental image information. The first eye tracker detects left-eye motion information of a user. The second eye tracker detects right-eye motion information of the user. The processor determines an eye focus region of the user and depth information of the eye focus region according to the environmental image information, the left-eye motion information, and the right-eye motion information. The processor further monitors a displacement of the eye focus region and a change in the depth information, and accordingly determines whether to adjust image positions of the first display device and the second display device and/or focus of the camera.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 7, 2020
    Assignee: ACER INCORPORATED
    Inventors: Tzu-Chieh Lin, Chao-Shih Huang
  • Publication number: 20200090312
    Abstract: The disclosure provides a method for dynamically adjusting image clarity and an image processing device using the same method. The method includes: retrieving an image frame and searching for a predetermined object therein; evaluating a first sharpness of the predetermined object; if the first sharpness of the predetermined object is lower than a sharpness threshold, calculating a difference value between the first sharpness and the sharpness threshold; dividing the image frame into blocks and evaluating a risk value and an effect value of increasing a second sharpness of each block; inputting the difference value, the risk value, and the effect value to a classifying model to generate a clarity setting value; and adjusting a clarity of a display on showing the image frame based on the clarity setting value.
    Type: Application
    Filed: December 5, 2018
    Publication date: March 19, 2020
    Applicant: Acer Incorporated
    Inventors: Tzu-Chieh Lin, Chen-Kang Su
  • Patent number: 10553747
    Abstract: A semiconductor device comprises a substrate, a first semiconductor unit on the substrate, and an first adhesion structure between the substrate and the first semiconductor unit, and directly contacting the first semiconductor unit and the substrate, wherein the first adhesion structure comprises an adhesion layer and a sacrificial layer, and the adhesion layer and the sacrificial layer are made of different materials, and wherein an adhesion between the first semiconductor unit and the adhesion layer is different from that between the first semiconductor unit and the sacrificial layer.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: February 4, 2020
    Assignee: Epistar Corporation
    Inventors: Chih-Chiang Lu, Yi-Ming Chen, Chun-Yu Lin, Ching-Pei Lin, Chung-Hsun Chien, Chien-Fu Huang, Hao-Min Ku, Min-Hsun Hsieh, Tzu-Chieh Hsu
  • Publication number: 20200020829
    Abstract: A light-emitting device includes a semiconductor structure including a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a via penetrating the second semiconductor layer and the active layer to expose a surface of the first semiconductor layer; a first electrode formed in the via and on the second semiconductor layer; a second electrode formed on the second semiconductor layer; and an insulating structure covering the first electrode, the second electrode and the semiconductor structure and including a first opening to expose the first electrode and a second opening to expose the second electrode, wherein the first electrode and the second electrode respectively include a metal layer contacting the insulating layer, the metal layer includes a material including a surface tension value larger than 1500 dyne/cm and a standard reduction potential larger than 0.3 V.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 16, 2020
    Inventors: Yi-Hung Lin, Chao-Hsing Chen, Jia-Kuen Wang, Tzu-Yao Tseng, Jen-Chieh Yu, Guan-Wu Chen
  • Publication number: 20200020729
    Abstract: A photo diode includes a pixel unit, a photo conversion layer, and a dielectric layer. The pixel unit includes a pair of pixels. The photo conversion layer is above the pixel unit and has a pair of portions, each of which corresponds to a respective one of the pixels. The dielectric layer is between the portions of the photo conversion layer. A method of manufacturing the photo diode is also disclosed.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Tzu-Jui Wang, Keng-Yu Chou, Chun-Hao Chuang, Ming-Chieh Hsu, Ren-Jie Lin, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 10511140
    Abstract: A light-emitting device is provided. The light-emitting device comprises: a substrate; and multiple radiation emitting regions arranged on the substrate, and comprising: a first radiation emitting region capable of emitting coherent light and emits a coherent light when driven by a first current; a second radiation emitting region capable of emitting coherent light and emits an incoherent light when driven by the first current, wherein each of the first radiation emitting region and the second emitting region comprises epitaxial structure comprising a first DBR stack, a light-emitting structure, and a second DBR stack.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 17, 2019
    Assignee: EPISTAR CORPORATION
    Inventors: Tzu-Chieh Hsu, Yi-Wen Huang, Yi-Hung Lin, Chih-Chiang Lu
  • Publication number: 20190378985
    Abstract: A light-emitting diode display device is provided, including: a substrate, including a plurality of grooves, wherein an electrical contact is disposed in each of the grooves; and a plurality of light-emitting diodes, configured to be installed in the grooves, wherein each of the light-emitting diodes includes: a main body; and a first contact and a second contact, disposed on the main body, wherein the first contact and the second contact are respectively electrically connected to the substrate through the corresponding electrical contacts.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Inventors: Chun-Hsien LIN, Ming-Chang LIN, Tzu-Min YAN, Tsau-Hua HSIEH, Tung-Kai LIU, Jui-Feng KO, Hui-Chieh WANG