Patents by Inventor Tzu-Chin Wu

Tzu-Chin Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180190488
    Abstract: The present invention provides a method for forming an amorphous silicon multiple layer structure, the method comprises the flowing steps: first, a substrate material layer is provided, next, a first amorphous silicon layer is formed on the substrate material layer, wherein the first amorphous silicon layer includes a plurality of hydrogen atoms disposed therein, afterwards, an UV curing process is performed to the first amorphous silicon layer, so as to remove the hydrogen atoms from the first amorphous silicon layer, finally, a second amorphous silicon layer is formed on the first amorphous silicon layer.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 5, 2018
    Inventors: Mei-Ling Chen, Wei-Hsin Liu, Yi-Wei Chen, Ching-Hsiang Chang, Jui-Min Lee, Chia-Lung Chang, Tzu-Chin Wu, Shih-Fang Tzou
  • Patent number: 9343573
    Abstract: A method of fabrication a transistor device with a non-uniform stress layer including the following processes. First, a semiconductor substrate having a first transistor region is provided. A low temperature deposition process is carried out to form a first tensile stress layer on a transistor within the first transistor region, wherein a temperature of the low temperature deposition process is lower than 300 degree Celsius (° C.). Then, a high temperature annealing process is performed, wherein a temperature of the high temperature annealing process is at least 150° C. higher than a temperature of the low temperature deposition process. Finally, a second tensile stress layer is formed on the first tensile stress layer, wherein the first tensile stress layer has a tensile stress lower than a tensile stress of the second tensile stress layer.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: May 17, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Liu, Tzu-Chin Wu, Yu-Shu Lin, Jei-Ming Chen, Wen-Yi Teng
  • Patent number: 9219151
    Abstract: A method for manufacturing a silicon nitride layer and a method for manufacturing a semiconductor structure applying the same are provided. The method for manufacturing a silicon nitride layer includes forming the silicon nitride layer and stressing the silicon nitride layer by a high density plasma chemical vapor deposition (HDPCVD) treatment.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: December 22, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsin Liu, Tzu-Chin Wu
  • Publication number: 20150206803
    Abstract: A method of forming an inter-level dielectric layer including the following step is provided. Two gate structures are formed on a substrate. A first oxide layer is formed to conformally cover the two gate structures and the substrate. The first oxide layer is etched ex-situ by a high density plasma (HDP) etching process. A second oxide layer is formed in-situ on the first oxide layer and fills a gap between the two gate structures by a high density plasma (HDP) depositing process.
    Type: Application
    Filed: January 19, 2014
    Publication date: July 23, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Hsin Liu, Tzu-Chin Wu, Jei-Ming Chen, Yu-Ren Wang, Chun-Yuan Wu, Chin-Fu Lin
  • Publication number: 20150087126
    Abstract: A method of fabrication a transistor device with a non-uniform stress layer including the following processes. First, a semiconductor substrate having a first transistor region is provided. A low temperature deposition process is carried out to form a first tensile stress layer on a transistor within the first transistor region, wherein a temperature of the low temperature deposition process is lower than 300 degree Celsius (° C.) . Then, a high temperature annealing process is performed, wherein a temperature of the high temperature annealing process is at least 150° C. higher than a temperature of the low temperature deposition process. Finally, a second tensile stress layer is formed on the first tensile stress layer, wherein the first tensile stress layer has a tensile stress lower than a tensile stress of the second tensile stress layer.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Chih-Chien Liu, Tzu-Chin Wu, Yu-Shu Lin, Jei-Ming Chen, Wen-Yi Teng
  • Patent number: 8937369
    Abstract: A transistor includes a semiconductor substrate, at least a gate structure, at least a first tensile stress layer, a second tensile stress layer, a source region, and a drain region. The gate structure is disposed within a first transistor region of the semiconductor substrate. The first tensile stress layer includes a curved portion encompassing the gate structure, at least an extension portion with a curved top surface located on the semiconductor substrate at sides of the gate structure, and a transition portion between the curved portion and the extension portion. The first tensile stress layer has a thickness gradually thinning from the curved portion and the extension portion toward the transition portion. The second tensile stress layer is disposed on the first tensile stress layer. And the source/drain regions are separately located in the semiconductor substrate on two sides of the gate structure.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: January 20, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Chien Liu, Tzu-Chin Wu, Yu-Shu Lin, Jei-Ming Chen, Wen-Yi Teng
  • Publication number: 20140091395
    Abstract: A method for fabricating a transistor device including the following processes. First, a semiconductor substrate having a first transistor region is provided. A low temperature deposition process is carried out to form a first tensile stress layer on a transistor within the first transistor region, wherein a temperature of the low temperature deposition process is lower than 300 degree Celsius (° C.). Then, a high temperature annealing process is performed, wherein a temperature of the high temperature annealing process is at least 150° C. higher than a temperature of the low temperature deposition process. Finally, a second tensile stress layer is formed on the first tensile stress layer, wherein the first tensile stress layer has a lower tensile stress than the second tensile stress layer.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 3, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Liu, Tzu-Chin Wu, Yu-Shu Lin, Jei-Ming Chen, Wen-Yi Teng
  • Publication number: 20140042501
    Abstract: A MOS transistor includes a gate structure and a spacer. The gate structure is located on a substrate. The spacer is located on the substrate beside the gate structure, and the spacer includes an L-shaped inner spacer and an outer spacer, wherein the outer spacer is located on the L-shaped inner spacer, and the two ends of the L-shaped inner spacer protrude from the outer spacer. Moreover, the present invention also provides a MOS transistor process for forming the MOS transistor.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Inventors: Jei-Ming Chen, Chih-Chien Liu, Yu-Shu Lin, Tzu-Chin Wu