Patents by Inventor Tzu-Chung Wang

Tzu-Chung Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200273996
    Abstract: The various described embodiments provide a transistor with a negative capacitance, and a method of creating the same. The transistor includes a gate structure having a ferroelectric layer. The ferroelectric layer is formed by forming a thick ferroelectric film, annealing the ferroelectric film to have a desired phase, and thinning the ferroelectric film to a desired thickness of the ferroelectric layer. This process ensures that the ferroelectric layer will have ferroelectric properties regardless of its thickness.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Feng Yuan, Ming-Shiang Lin, Chia-Cheng Ho, Jin Cai, Tzu-Chung Wang, Tung Ying Lee
  • Publication number: 20200273997
    Abstract: The various described embodiments provide a transistor with a negative capacitance, and a method of creating the same. The transistor includes a gate structure having a ferroelectric layer. The ferroelectric layer is formed by forming a thick ferroelectric film, annealing the ferroelectric film to have a desired phase, and thinning the ferroelectric film to a desired thickness of the ferroelectric layer. This process ensures that the ferroelectric layer will have ferroelectric properties regardless of its thickness.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Feng Yuan, Ming-Shiang Lin, Chia-Cheng Ho, Jin Cai, Tzu-Chung Wang, Tung Ying Lee
  • Patent number: 10707347
    Abstract: The various described embodiments provide a transistor with a negative capacitance, and a method of creating the same. The transistor includes a gate structure having a ferroelectric layer. The ferroelectric layer is formed by forming a thick ferroelectric film, annealing the ferroelectric film to have a desired phase, and thinning the ferroelectric film to a desired thickness of the ferroelectric layer. This process ensures that the ferroelectric layer will have ferroelectric properties regardless of its thickness.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: July 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng Yuan, Chia-Cheng Ho, Tzu-Chung Wang, Tung Ying Lee, Jin Cai, Ming-Shiang Lin
  • Publication number: 20200127138
    Abstract: The various described embodiments provide a transistor with a negative capacitance, and a method of creating the same. The transistor includes a gate structure having a ferroelectric layer. The ferroelectric layer is formed by forming a thick ferroelectric film, annealing the ferroelectric film to have a desired phase, and thinning the ferroelectric film to a desired thickness of the ferroelectric layer. This process ensures that the ferroelectric layer will have ferroelectric properties regardless of its thickness.
    Type: Application
    Filed: January 23, 2019
    Publication date: April 23, 2020
    Inventors: Feng Yuan, Chia-Cheng Ho, Tzu-Chung Wang, Tung Ying Lee, Jin Cai, Ming-Shiang Lin
  • Publication number: 20200105609
    Abstract: A semiconductor device includes a plurality of fins on a substrate, a fin end spacer plug on an end surface of each of the plurality of fins and a fin liner layer, an insulating layer on the plurality of fins, and a source/drain epitaxial layer in a source/drain recess in each of the plurality of fins.
    Type: Application
    Filed: August 8, 2019
    Publication date: April 2, 2020
    Inventors: Tzu-Chung WANG, Tung Ying LEE
  • Publication number: 20200098876
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. The semiconductor device includes a plurality of fins on a substrate. A fin end spacer is formed on an end surface of each of the plurality of fins. An insulating layer is formed on the plurality of fins. A source/drain epitaxial layer is formed in a source/drain space in each of the plurality of fins. A gate electrode layer is formed on the insulating layer and wrapping around the each channel region. Sidewall spacers are formed on the gate electrode layer.
    Type: Application
    Filed: May 30, 2019
    Publication date: March 26, 2020
    Inventors: Tung Ying LEE, Tzu-Chung WANG, Kai-Tai CHANG, Wei-Sheng YUN
  • Publication number: 20200075716
    Abstract: The current disclosure describes techniques for forming a low resistance junction between a source/drain region and a nanowire channel region in a gate-all-around FET device. A semiconductor structure includes a substrate, multiple separate semiconductor nanowire strips vertically stacked over the substrate, a semiconductor epitaxy region adjacent to and laterally contacting each of the multiple separate semiconductor nanowire strips, a gate structure at least partially over the multiple separate semiconductor nanowire strips, and a dielectric structure laterally positioned between the semiconductor epitaxy region and the gate structure. The first dielectric structure has a hat-shaped profile.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 5, 2020
    Inventors: Tzu-Chung Wang, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee
  • Publication number: 20200075718
    Abstract: The current disclosure describes techniques for forming a low resistance junction between a source/drain region and a nanowire channel region in a gate-all-around FET device. A semiconductor structure includes a substrate, multiple separate semiconductor nanowire strips vertically stacked over the substrate, a semiconductor epitaxy region adjacent to and laterally contacting each of the multiple separate semiconductor nanowire strips, a gate structure at least partially over the multiple separate semiconductor nanowire strips, and a dielectric structure laterally positioned between the semiconductor epitaxy region and the gate structure. The first dielectric structure has a hat-shaped profile.
    Type: Application
    Filed: October 10, 2019
    Publication date: March 5, 2020
    Inventors: Tzu-Chung Wang, Chao-Ching Cheng, Tzu-Chiang Chen, Tung Ying Lee
  • Publication number: 20200058784
    Abstract: A semiconductor device includes a plurality of fins on a substrate. A fin liner is formed on an end surface of each of the plurality of fins. An insulating layer is formed on the plurality of fins. A plurality of polycrystalline silicon layers are formed on the insulating layer. A source/drain epitaxial layer is formed in a source/drain space in each of the plurality of fins. One of the polycrystalline silicon layers is formed on a region spaced-apart from the fins.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 20, 2020
    Inventors: Kai-Tai CHANG, Tung Ying LEE, Wei-Sheng YUN, Tzu-Chung WANG, Chia-Cheng HO, Ming-Shiang LIN, Tzu-Chiang CHEN
  • Publication number: 20200058763
    Abstract: A semiconductor device includes a first fin and a second fin in a first direction and aligned in the first direction over a substrate, an isolation insulating layer disposed around lower portions of the first and second fins, a first gate electrode extending in a second direction crossing the first direction and a spacer dummy gate layer, and a source/drain epitaxial layer in a source/drain space in the first fin. The source/drain epitaxial layer is adjacent to the first gate electrode and the spacer dummy gate layer with gate sidewall spacers disposed therebetween, and the spacer dummy gate layer includes one selected from the group consisting of silicon nitride, silicon oxynitride, silicon carbon nitride, and silicon carbon oxynitride.
    Type: Application
    Filed: September 5, 2019
    Publication date: February 20, 2020
    Inventors: Kai-Tai CHANG, Tung Ying LEE, Wei-Sheng YUN, Tzu-Chung WANG, Chia-Cheng HO, Ming-Shiang LIN, Tzu-Chiang CHEN
  • Publication number: 20190123198
    Abstract: An integrated circuit device includes a gate stack disposed over a substrate. A first L-shaped spacer is disposed along a first sidewall of the gate stack and a second L-shaped spacer is disposed along a second sidewall of the gate stack. The first L-shaped spacer and the second L-shaped spacer include silicon and carbon. A first source/drain epitaxy region and a second source/drain epitaxy region are disposed over the substrate. The gate stack is disposed between the first source/drain epitaxy region and the second source/drain epitaxy region. An interlevel dielectric (ILD) layer disposed over the substrate. The ILD layer is disposed between the first source/drain epitaxy region and a portion of the first L-shaped spacer disposed along the first sidewall of the gate stack and between the second source/drain epitaxy region and a portion of the second L-shaped spacer disposed along the second sidewall of the gate stack.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 10164093
    Abstract: An exemplary method includes forming a dummy gate structure over a substrate and forming a set of spacers adjacent to the dummy gate structure. The set of spacers includes spacer liners disposed on sidewalls of the dummy gate structure and main spacers disposed on the spacer liners. The spacer liners include silicon and carbon. The method further includes forming source/drain epitaxy regions over the substrate. The source/drain epitaxy regions are disposed adjacent to the set of spacers, such that the dummy gate structure is disposed between the source/drain epitaxy regions. The method further includes removing the main spacers after forming the source/drain epitaxy regions. The method further includes replacing the dummy gate structure with a gate structure, where the replacing includes removing the dummy gate structure to form a trench defined by the spacers liners, such that the gate structure is formed in the trench.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 9748152
    Abstract: Forming a semiconductor arrangement includes non-destructively determining a first spacer height of a first sidewall spacer adjacent a dummy gate and a second spacer height of a second sidewall spacer adjacent the dummy gate based upon a height of a photoresist as measured using optical critical dimension (OCD) spectroscopy. When the photoresist is sufficiently uniform, a hard mask etch is performed to remove a hard mask from the dummy gate and to remove portions of sidewall spacers of the dummy gate. A gate electrode is formed between the first sidewall spacer and the second sidewall spacer to form a substantially uniform gate. Controlling gate formation based upon photoresist height as measured by OCD spectroscopy provides a non-destructive manner of promoting uniformity.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Lun Lu, Tzu-Chung Wang
  • Publication number: 20170186867
    Abstract: An exemplary method includes forming a dummy gate structure over a substrate and forming a set of spacers adjacent to the dummy gate structure. The set of spacers includes spacer liners disposed on sidewalls of the dummy gate structure and main spacers disposed on the spacer liners. The spacer liners include silicon and carbon. The method further includes forming source/drain epitaxy regions over the substrate. The source/drain epitaxy regions are disposed adjacent to the set of spacers, such that the dummy gate structure is disposed between the source/drain epitaxy regions. The method further includes removing the main spacers after forming the source/drain epitaxy regions. The method further includes replacing the dummy gate structure with a gate structure, where the replacing includes removing the dummy gate structure to form a trench defined by the spacers liners, such that the gate structure is formed in the trench.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Patent number: 9595477
    Abstract: A method is described which includes providing a substrate and forming a first spacer material layer abutting a gate structure on the substrate. A second spacer material layer is formed adjacent and abutting the gate structure and overlying the first spacer material layer. The first spacer material layer and the second spacer material layer are then etched concurrently to form first and second spacers, respectively. An epitaxy region is formed (e.g., grown) on the substrate which includes an interface with each of the first and second spacers. The second spacer may be subsequently removed and the first spacer remain on the device decreases the aspect ratio for an ILD gap fill. An example composition of the first spacer is SiCN.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 14, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Jen Pan, Yu-Hsien Lin, Hsiang-Ku Shen, Wei-Han Fan, Yun Jing Lin, Yimin Huang, Tzu-Chung Wang
  • Publication number: 20160322268
    Abstract: Forming a semiconductor arrangement includes non-destructively determining a first spacer height of a first sidewall spacer adjacent a dummy gate and a second spacer height of a second sidewall spacer adjacent the dummy gate based upon a height of a photoresist as measured using optical critical dimension (OCD) spectroscopy. When the photoresist is sufficiently uniform, a hard mask etch is performed to remove a hard mask from the dummy gate and to remove portions of sidewall spacers of the dummy gate. A gate electrode is formed between the first sidewall spacer and the second sidewall spacer to form a substantially uniform gate. Controlling gate formation based upon photoresist height as measured by OCD spectroscopy provides a non-destructive manner of promoting uniformity.
    Type: Application
    Filed: July 7, 2016
    Publication date: November 3, 2016
    Inventors: Chih-Lun Lu, Tzu-Chung Wang
  • Patent number: 9390985
    Abstract: Forming a semiconductor arrangement includes non-destructively determining a first spacer height of a first sidewall spacer adjacent a dummy gate and a second spacer height of a second sidewall spacer adjacent the dummy gate based upon a height of a photoresist as measured using optical critical dimension (OCD) spectroscopy. When the photoresist is sufficiently uniform, a hard mask etch is performed to remove a hard mask from the dummy gate and to remove portions of sidewall spacers of the dummy gate. A gate electrode is formed between the first sidewall spacer and the second sidewall spacer to form a substantially uniform gate. Controlling gate formation based upon photoresist height as measured by OCD spectroscopy provides a non-destructive manner of promoting uniformity.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Lun Lu, Tzu-Chung Wang
  • Publication number: 20160064293
    Abstract: Forming a semiconductor arrangement includes non-destructively determining a first spacer height of a first sidewall spacer adjacent a dummy gate and a second spacer height of a second sidewall spacer adjacent the dummy gate based upon a height of a photoresist as measured using optical critical dimension (OCD) spectroscopy. When the photoresist is sufficiently uniform, a hard mask etch is performed to remove a hard mask from the dummy gate and to remove portions of sidewall spacers of the dummy gate. A gate electrode is formed between the first sidewall spacer and the second sidewall spacer to form a substantially uniform gate. Controlling gate formation based upon photoresist height as measured by OCD spectroscopy provides a non-destructive manner of promoting uniformity.
    Type: Application
    Filed: February 4, 2015
    Publication date: March 3, 2016
    Inventors: Chih-Lun Lu, Tzu-Chung Wang
  • Patent number: 9054125
    Abstract: A method for forming a semiconductor device includes forming a gate structure over a semiconductor substrate. The gate structure includes a gate electrode, at least two hard mask (HM) layers over the gate electrode, and a spacer abutting a side wall of the gate electrode and the at least two hard mask layers. The method further comprises forming a contact etch stop layer (CESL) over the gate structure, exposing at least one of the HM layers after forming the CESL, and removing the exposed at least one of the HM layers.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Chung Wang, Tzu-Yen Hsieh
  • Publication number: 20140322872
    Abstract: A method for forming a semiconductor device includes forming a gate structure over a semiconductor substrate. The gate structure includes a gate electrode, at least two hard mask (HM) layers over the gate electrode, and a spacer abutting a side wall of the gate electrode and the at least two hard mask layers. The method further comprises forming a contact etch stop layer (CESL) over the gate structure, exposing at least one of the HM layers after forming the CESL, and removing the exposed at least one of the HM layers.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tzu-Chung WANG, Tzu-Yen HSIEH