Patents by Inventor Tzu-Jui WANG
Tzu-Jui WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240363653Abstract: The present disclosure relates to an image sensor including a pixel along a substrate. The pixel includes a first semiconductor region having a first doping type. A second semiconductor region is directly over the first semiconductor region. The second semiconductor region has a second doping type opposite the first doping type and meets the first semiconductor region at a p-n junction. A ring-shaped third semiconductor region laterally surrounds the first and second semiconductor regions. The ring-shaped third semiconductor region has the first doping type. A ring-shaped fourth semiconductor region laterally surrounds the ring-shaped third semiconductor region. The ring-shaped fourth semiconductor region has the second doping type. A ring-shaped fifth semiconductor region is directly over the ring-shaped third semiconductor region and has the second doping type.Type: ApplicationFiled: July 8, 2024Publication date: October 31, 2024Inventors: Tzu-Jui Wang, Yuichiro Yamashita
-
Publication number: 20240355859Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a first IC chip bonded to a second IC chip. The first IC chip includes a plurality of photodetectors disposed in a first substrate and a first bond structure. The first bond structure includes a first plurality of bond contacts disposed on a first plurality of conductive bond pads. The second IC chip includes a second bond structure and a second substrate. A first bond interface is disposed between the first bond structure and the second bond structure. The second bond structure comprises a second plurality of bond contacts. The first bond structure further includes a first plurality of shield structures disposed between adjacent conductive bond pads in the first plurality of conductive bond pads.Type: ApplicationFiled: April 19, 2023Publication date: October 24, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240355953Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.Type: ApplicationFiled: June 27, 2024Publication date: October 24, 2024Inventors: Jyh-Ming HUNG, Tzu-Jui WANG, Kuan-Chieh HUANG, Jhy-Jyi SZE
-
Publication number: 20240347576Abstract: Various embodiments of the present disclosure relate to an interstitial stacked-integrated-circuit interface shielding structure. A first integrated circuit (IC) chip includes a first dielectric layer. A second IC chip is bonded to the first IC chip at a bond interface and includes a second dielectric layer directly contacting the first dielectric layer at the bond interface. A first pair of conductive pads are respectively in the first and second dielectric layers and directly contacting at the bond interface. A second pair of conductive pads are respectively in the first and second dielectric layers and directly contacting at the bond interface. A pair of shield structures are respectively in the first and second dielectric layers and directly contact at the bond interface. Further, the pair of shield structures separate the first pair of conductive pads from the second pair of conductive pads.Type: ApplicationFiled: April 17, 2023Publication date: October 17, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240339467Abstract: Some embodiments relate to an IC device, including a first chip comprising a plurality of pixel blocks respectively including one of a first plurality of conductive pads, the plurality of pixel blocks arranged in rows extending in a first direction and columns extending in a second direction perpendicular to the first direction; a second chip bonded to the first chip at a bonding interface, where the second chip comprises a second plurality of conductive pad recessed and contacting the first plurality of conductive pads along the bonding interface; and a first corrugated shield line having outermost edges set-back along the second direction from outermost edges of a first row of the plurality of pixel blocks, the first corrugated shield line being arranged within a first dielectric layer and laterally separating neighboring ones of the first plurality of conductive pads within the first row of the plurality of pixel blocks.Type: ApplicationFiled: April 7, 2023Publication date: October 10, 2024Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Chia-Chi Hsiao, Kuan-Chieh Huang, Wei-Cheng Hsu, Hao-Lin Yang, Yi-Han Liao, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240339475Abstract: Some embodiments relate to an IC device, including a first chip; and a second chip bonded to the first chip at a bonding interface; where the first and second chips respectively comprise a first dielectric layer and a second dielectric layer directly contacting; the first chip further comprises a plurality of conductive pads recessed into the first dielectric layer and in a plurality of rows and columns; where the plurality of conductive pads are arranged with a zig-zag layout along the plurality of columns and along the plurality of rows and comprise a first conductive pad and a second conductive pad; the first chip further comprises a first shield line in the first dielectric layer and laterally between the first and second conductive pads, and the second chip further comprises a contact recessed into the second dielectric layer and directly contacting the first conductive pad at the bonding interface.Type: ApplicationFiled: April 7, 2023Publication date: October 10, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240332333Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a first IC chip bonded to a second IC chip. The first chip IC includes a first bond structure. The first bond structure includes a first plurality of conductive bond pads and a first plurality of shield structures disposed between adjacent conductive bond pads among the first plurality of conductive bond pads. The second IC chip includes a second bond structure. A bonding interface is disposed between the first bond structure and the second bond structure. The second bond structure includes a second plurality of conductive bond pads and a second plurality of shield structures. The first plurality of conductive bond pads contacts the second plurality of conductive bond pads and the first plurality of shield structures contacts the second plurality of shield structures at the bonding interface.Type: ApplicationFiled: March 31, 2023Publication date: October 3, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
-
Patent number: 12099257Abstract: An optical photographing system includes seven lens elements which are, in order from an object side to an image side along an optical path: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. Each of the seven lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side. The object-side surface of the sixth lens element is convex in a paraxial region thereof. At least one of the object-side surface and the image-side surface of at least one lens element of the optical photographing system has at least one inflection point.Type: GrantFiled: November 30, 2021Date of Patent: September 24, 2024Assignee: LARGAN PRECISION CO., LTD.Inventors: Jin Sen Wang, Kuo-Jui Wang, Kuan-Ting Yeh, Tzu-Chieh Kuo
-
Publication number: 20240290810Abstract: Various embodiments of the present disclosure are directed towards an image sensor comprising a pixel with a dual-PD layout for enhanced scaling down. The pixel spans a first integrated circuit (IC) die and a second IC die stacked with the first IC die. The pixel comprises a plurality of photodetectors in the first IC die, and further comprises a plurality of pixel transistors split amongst the first IC die and the second IC die. The plurality of photodetectors are grouped into one or more pairs, each having the dual-PD layout. A DTI structure completely and individually surrounds the plurality of photodetectors, and further extends completely through a substrate within which the plurality of photodetectors are arranged. As such, the DTI structure completely separates the plurality of photodetectors from each other.Type: ApplicationFiled: May 26, 2023Publication date: August 29, 2024Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Chia-Chi Hsiao, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240290811Abstract: The present disclosure relates to an image sensor integrated chip structure. The image sensor integrated chip structure includes one or more logic devices disposed within a first substrate and coupled to a first interconnect structure on the first substrate. A plurality of pixel support devices are disposed along a first-side of a second substrate and coupled to a second interconnect structure on the second substrate. The first substrate is bonded to the second substrate. A plurality of image sensing elements are disposed within a third substrate in pixel regions respectively including two or more of the plurality of image sensing elements. A plurality of transfer gates and a third interconnect structure are disposed on a first-side of the third substrate. The third interconnect structure includes interconnect wires and vias confined between the first-side of second substrate and the first-side of the third substrate.Type: ApplicationFiled: July 3, 2023Publication date: August 29, 2024Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Chia-Chi Hsiao, Chen-Jong Wang, Dun-Nian Yaung
-
Patent number: 12062671Abstract: The present disclosure relates to an image sensor including a pixel along a substrate. The pixel includes a first semiconductor region having a first doping type. A second semiconductor region is directly over the first semiconductor region. The second semiconductor region has a second doping type opposite the first doping type and meets the first semiconductor region at a p-n junction. A ring-shaped third semiconductor region laterally surrounds the first and second semiconductor regions. The ring-shaped third semiconductor region has the first doping type. A ring-shaped fourth semiconductor region laterally surrounds the ring-shaped third semiconductor region. The ring-shaped fourth semiconductor region has the second doping type. A ring-shaped fifth semiconductor region is directly over the ring-shaped third semiconductor region and has the second doping type.Type: GrantFiled: June 16, 2021Date of Patent: August 13, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Jui Wang, Yuichiro Yamashita
-
Patent number: 12051763Abstract: A photovoltaic cell includes a germanium-containing well embedded in a single crystalline silicon substrate and extending to a proximal horizontal surface of the single crystalline silicon substrate, wherein germanium-containing well includes germanium at an atomic percentage greater than 50%. A silicon-containing capping structure is located on a top surface of the germanium-containing well and includes silicon at an atomic percentage greater than 42%. The silicon-containing capping structure prevents oxidation of the germanium-containing well. A photovoltaic junction may be formed within, or across, the trench by implanting dopants of a first conductivity type and dopants of a second conductivity type.Type: GrantFiled: July 25, 2023Date of Patent: July 30, 2024Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Jyh-Ming Hung, Tzu-Jui Wang, Kuan-Chieh Huang, Jhy-Jyi Sze
-
Publication number: 20240250098Abstract: An integrated chip including a first semiconductor substrate. The first semiconductor substrate includes a doped region. A first photodetector and a second photodetector are in the first semiconductor substrate. A trench isolation layer at least partially surrounds the first photodetector and the second photodetector and extends between the first photodetector and the second photodetector. The trench isolation layer has a first pair of sidewalls. The first semiconductor substrate extends from the first photodetector, between the first pair of sidewalls, to the second photodetector. The doped region is between the first pair of sidewalls. The first photodetector and a first gate partially form a first transistor. The second photodetector and a second gate partially form a second transistor. A second semiconductor substrate is over the first gate and the second gate. A third transistor is along the second semiconductor substrate. The third transistor is coupled to the first transistor.Type: ApplicationFiled: May 22, 2023Publication date: July 25, 2024Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Chia-Chi Hsiao, Chun-Hao Chuang, Chen-Jong Wang, Dun-Nian Yaung
-
Patent number: 12044829Abstract: An image capturing lens assembly includes seven lens elements, which are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. Each of the seven lens elements has an object-side surface towards the object side and an image-side surface towards the image side. The second lens element with positive refractive power has the object-side surface being convex in a paraxial region thereof. The fourth lens element with positive refractive power has the image-side surface being convex in a paraxial region thereof. The sixth lens element has positive refractive power. The seventh lens element has the image-side surface being concave in a paraxial region thereof.Type: GrantFiled: April 14, 2021Date of Patent: July 23, 2024Assignee: LARGAN PRECISION CO., LTD.Inventors: Kuo-Jui Wang, Tzu-Chieh Kuo
-
Publication number: 20240145498Abstract: Some embodiments relate to an integrated chip including a substrate having a first side and a second side opposite the first side. The integrated chip further includes a first photodetector positioned in a first pixel region within the substrate. A floating diffusion region with a first doping concentration of a first polarity is positioned on the first side of the substrate in the first pixel region. A first body contact region with a second doping concentration of a second polarity different from the first polarity is positioned on the second side of the substrate in the first pixel region.Type: ApplicationFiled: January 4, 2023Publication date: May 2, 2024Inventors: Hao-Lin Yang, Fu-Sheng Kuo, Ching-Chun Wang, Hsiao-Hui Tseng, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240145298Abstract: Structures with doping free connections and methods of fabrication are provided. An exemplary structure includes a substrate; a first region of a first conductivity type formed in the substrate; an overlying layer located over the substrate; a well region of a second conductivity type formed in the overlying layer; a conductive plug laterally adjacent to the well region and extending through the overlying layer to electrically contact with the first region; and a passivation layer located between the conductive plug and the well region.Type: ApplicationFiled: February 17, 2023Publication date: May 2, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shih-Min Huang, Tzu-Jui Wang, Jung-I Lin, Hung-Chang Chien, Kuan-Chieh Huang, Tzu-Hsuan Hsu, Chen-Jong Wang
-
Publication number: 20240128216Abstract: A bonding structure that may be used to form 3D-IC devices is formed using first oblong bonding pads on a first substrate and second oblong bonding pads one a second substrate. The first and second oblong bonding pads are laid crosswise, and the bond is formed. Viewed in a first cross-section, the first bonding pad is wider than the second bonding pad. Viewed in a second cross-section at a right angle to the first, the second bonding pad is wider than the first bonding pad. Making the bonding pads oblong and angling them relative to one another reduces variations in bonding area due to shifts in alignment between the first substrate and the second substrate. The oblong shape in a suitable orientation may also be used to reduce capacitive coupling between one of the bonding pads and nearby wires.Type: ApplicationFiled: January 4, 2023Publication date: April 18, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Ching-Chun Wang, Hsiao-Hui Tseng, Chen-Jong Wang, Dun-Nian Yaung
-
Publication number: 20240096918Abstract: A device structure according to the present disclosure may include a first die having a first substrate and a first interconnect structure, a second die having a second substrate and a second interconnect structure, and a third die having a third interconnect structure and a third substrate. The first interconnect structure is bonded to the second substrate via a first plurality of bonding layers. The second interconnect structure is bonded to the third interconnect structure via a second plurality of bonding layers. The third substrate includes a plurality of photodiodes and a first transistor. The second die includes a second transistor having a source connected to a drain of the first transistor, a third transistor having a gate connected to drain of the first transistor and the source of the second transistor, and a fourth transistor having a drain connected to the source of the third transistor.Type: ApplicationFiled: January 17, 2023Publication date: March 21, 2024Inventors: Hao-Lin Yang, Tzu-Jui Wang, Wei-Cheng Hsu, Cheng-Jong Wang, Dun-Nian Yuang, Kuan-Chieh Huang
-
Publication number: 20240079434Abstract: Various embodiments of the present disclosure are directed towards an image sensor including first chip and a second chip. The first chip includes a first substrate, a plurality of photodetectors disposed in the first substrate, a first interconnect structure disposed on a front side of the first substrate, and a first bond structure disposed on the first interconnect structure. The second chip underlies the first chip. The second chip includes a second substrate, a plurality of semiconductor devices disposed on the second substrate, a second interconnect structure disposed on a front side of the second substrate, and a second bond structure disposed on the second interconnect structure. A first bonding interface is disposed between the second bond structure and the first bond structure. The second interconnect structure is electrically coupled to the first interconnect structure by way of the first and second bond structures.Type: ApplicationFiled: January 5, 2023Publication date: March 7, 2024Inventors: Hao-Lin Yang, Kuan-Chieh Huang, Wei-Cheng Hsu, Tzu-Jui Wang, Chen-Jong Wang, Dun-Nian Yaung, Yu-Chun Chen
-
Publication number: 20240072082Abstract: A boron (B) layer may be formed as a passivation layer in a recess in which a vertical transfer gate is to be formed. The recess may then be filled with a gate electrode of the vertical transfer gate over the passivation layer (and/or one or more intervening layers) to form the vertical transfer gate. The passivation layer may be formed in the recess by epitaxial growth. The use of epitaxy to grow the passivation layer enables precise control over the profile, uniformity, and boron concentration in the passivation layer. Moreover, the use of epitaxy to grow the passivation layer may reduce the diffusion length of the passivation layer into the substrate of the pixel sensor, which provides increased area in the pixel sensor for the photodiode.Type: ApplicationFiled: August 26, 2022Publication date: February 29, 2024Inventors: Yu-Hung CHENG, Tzu-Jui WANG, Ching I. LI