Patents by Inventor Udo Hoss

Udo Hoss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140060145
    Abstract: In some aspects, methods, devices, and systems for monitoring sensor data and indicating recommendations for confirmation tests on a user interface are provided. Sensor data is received and is monitored to detect predetermined signal characteristics that are associated with a likelihood of inaccuracy of the sensor data. A recommendation for a confirmation test to be performed is indicated on a user interface after the occurrence of a predetermined signal characteristic is detected.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Inventors: Udo Hoss, Marc B. Taub, Gary A. Hayter, Royce Cheng, Andrew H. Naegeli, Christine M. Neuhaus, Stephen A. Rossi
  • Publication number: 20140046154
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20140034493
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20130334040
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: August 12, 2013
    Publication date: December 19, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 8602992
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: December 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 8600470
    Abstract: The methods and apparatus for detecting an analyte in blood are useful for detecting an analyte in tissue of a subject. The apparatus comprises a sensor, which comprises an elongated conductive material having a protrudent end, the protrudent end comprising an electrode that detects the presence of an analyte; a substrate affixed to the conductive material; and a support having an external surface, a proximal end, and a distal end. The conductive material is positioned on the support and the protrudent end of the conductive material protrudes beyond the distal end of the support. Optionally, the sensor is suspended within the lumen of a venous flow device. Typically, only a portion of the sensor is suspended within the lumen of the venous flow device, said portion comprising the protrudent end of the conductive material. Alternatively, the conductive material is positioned on the external surface of the intravenous infusion catheter.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 3, 2013
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Nannette M. Van Antwerp, Udo Hoss
  • Patent number: 8591416
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 26, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 8545403
    Abstract: Devices and methods for inserting at least a portion of a medical device in a patient are provided. Embodiments include medical device insertions that employ a plurality of insertion stages. Also provided are systems and kits for use in analyte monitoring.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: October 1, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Thomas A. Peyser, Marc B. Taub, Gary Ashley Stafford, Udo Hoss, Roy E. Morgan, Daniel H. Lee, John C. Mazza, Andrew H. Naegeli
  • Patent number: 8532732
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: September 10, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20130158376
    Abstract: Methods, devices and systems related providing accurate glucose levels in view of temperatures that may adversely affect glucose value.
    Type: Application
    Filed: June 18, 2012
    Publication date: June 20, 2013
    Inventors: Gary A. Hayter, Daniel M. Bernstein, Martin J. Fennell, Michael R. Love, Kenneth J. Doniger, Songbiao Zhang, Mark K. Sloan, Hyun Cho, Theodore J. Kunich, Jean-Pierre Cole, Christopher A. Thomas, Erwin S. Budiman, David L. Li, Royce Cheng, Udo Hoss
  • Publication number: 20130053667
    Abstract: The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho, Udo Hoss
  • Patent number: 8354013
    Abstract: Generally, embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of the sensing layer by inclusion of a high-boiling point solvent, where the sensing layer is disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Balasubrahmanya S. Bommakanti, Gary Sandhu, Udo Hoss, Geoffrey V. McGarraugh
  • Patent number: 8352011
    Abstract: The invention provides methods and apparatus for detecting an analyte in blood. The apparatus is particularly suited for bringing a sensor into direct contact with blood in vivo. The apparatus comprises a sensor that detects the presence of an analyte and an assembly means. The assembly means has a sensor end, wherein the sensor end of the assembly means is affixed to the sensor, and the assembly means is adapted for coupling with a venous flow device. By coupling with a venous flow device, the assembly means brings the sensor into direct contact with blood flowing through the venous flow device. Examples of venous flow devices that bring the sensor into direct contact with the blood of a subject include, but are not limited to, intravenous catheters and external blood loops, such as are used in extra corporeal membrane oxygenation or hemodialysis.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: January 8, 2013
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Nannette M. Van Antwerp, Bradley J. Enegren, John J. Mastrototaro, Rajiv Shah, Udo Hoss, Yanan Zhang, Jenn-Hann Larry Wang, Kent L. Clark
  • Publication number: 20130004649
    Abstract: Generally, embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of the sensing layer by inclusion of a self-polymerizing hydrogel, where the sensing layer is disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Inventors: Balasubrahmanya S. Bommakanti, Gary Sandhu, Udo Hoss
  • Publication number: 20120323098
    Abstract: Analyte sensor connectors that connect analyte sensors, e.g., conductive members of analyte sensors, to other devices such as sensor electronics units, e.g., sensor control units, are provided. Also provided are systems that include analyte sensors, analyte sensor connectors, and analyte sensor electronics units, as well as methods of establishing and maintaining connections between analyte sensors and analyte sensor electronics units, and methods of analyte monitoring/detection. Also provided are methods of making analyte sensor connectors and systems that include analyte sensor connectors.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Inventors: Mohammad E. Moein, Louis G. Pace, Udo Hoss, Phu X. Le, Samuel M. Curry
  • Publication number: 20120296186
    Abstract: Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a membrane with low temperature sensitivity. The sensing layer is disposed on a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 22, 2012
    Inventors: Tianmei Ouyang, Zenghe Liu, Yohannes Goti, Benjamin J. Feldman, Udo Hoss
  • Publication number: 20120296189
    Abstract: Provided are methods of measuring analyte concentrations in interstitial fluid samples, methods of determining accuracy of subcutaneously implantable analyte sensors, methods of manufacturing and determining calibration factors for subcutaneously implantable analyte sensors, as well as subcutaneously implantable analyte sensors manufactured according to the described methods and having a high level of accuracy. Methods of determining the concentration of an analyte in a bodily sample, and methods of extracting interstitial fluid are also provided.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Inventors: John Bhogal, Shridhara Alva Karinka, Timothy P. Henning, David Cunningham, Udo Hoss, Andrew H. Naegeli, John LaTour
  • Patent number: 8280474
    Abstract: The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: October 2, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho, Udo Hoss
  • Publication number: 20120157801
    Abstract: An analyte monitoring system comprising: an on-body housing; an analyte sensor coupled to the housing; an electrical output interface disposed on an outer surface of the housing; and a removable adaptor coupled to the housing. In one embodiment, a portion of the analyte sensor extends from the housing for implantation into a patient's body. The electrical output interface is electrically coupled to the analyte sensor. The removable adaptor is mechanically coupled to the housing and electrically coupled to the electrical output interface. The removable adaptor serves as a data conduit between the analyte sensor and a remote device.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 21, 2012
    Inventors: Udo Hoss, Craig W. Sharp, Hyun Cho, Todd Winkler, Paul Legg
  • Publication number: 20120150005
    Abstract: Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a sensing surface that includes two or more sensing elements disposed laterally to each other, where the sensing surface is on a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Inventors: Udo Hoss, Phu Le, Yi Wang, Frank David Fujimoto, Suyue Qian, Lam Tran