Patents by Inventor Ulrich Vollath

Ulrich Vollath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110267228
    Abstract: Methods and apparatus are provided for processing a set of GNSS signal data derived from signals of a first set of satellites having at least three carriers and signals of a second set of satellites having two carriers. A geometry filter uses a geometry filter combination to obtain an array of geometry-filter ambiguity estimates for the geometry filter combination and associated statistical information. Ionosphere filters use a two-frequency ionospheric combination to obtain an array of ionosphere-filter ambiguity estimates for the two-frequency ionospheric combinations and associated statistical information. Each two-frequency ionospheric combination comprises a geometry-free two-frequency ionospheric residual carrier-phase combination of observations of a first frequency and observations of a second frequency.
    Type: Application
    Filed: February 16, 2010
    Publication date: November 3, 2011
    Applicant: TRIMBLE NAVIGATION LIMITED
    Inventors: Nicholas Charles Talbot, Ulrich Vollath
  • Publication number: 20110267226
    Abstract: Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of a GNSS signal from each of a plurality of GNSS satellites are obtained (2120). The observations are fed to a filter having a state vector comprising a float ambiguity for each received frequency of the GNSS signals (2140). The filter estimates a float value for each float ambiguity of the state vector and co-variance values associated with the state vector. Integer values are assigned to at least a subgroup of the estimated float values to define a plurality of integer ambiguity candidate sets (2160). A weighted average of the candidate sets is formed (2200). A formal precision value based on covariance values of the filter is determined (2205), the formal precision value being a measure for an achievable precision. An achieved precision value of the weighted average is determined (2210).
    Type: Application
    Filed: August 5, 2009
    Publication date: November 3, 2011
    Applicant: Trimble Navigation Limited
    Inventors: Nicholas Charles Talbot, Ulrich Vollath
  • Publication number: 20110260914
    Abstract: Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of GNSS signals are obtained from each of a plurality of GNSS satellites (120). The observations are fed to a filter having a state vector at least comprising a float ambiguity for each received frequency of the GNSS signals (140). The filter estimates float value for each float ambiguity of the state vector. Integer values are assigned to at least a subgroup of the estimated float values to define a plurality of integer ambiguity candidate sets (160). A first number of candidate sets is selected having a quality measure better than a first threshold, wherein the first threshold is determined based on a reference quality measure of a reference candidate set (180). A weighted average of the selected candidate sets is formed, each candidate set weighted in the weighted average based on its quality measure (200).
    Type: Application
    Filed: August 5, 2009
    Publication date: October 27, 2011
    Applicant: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Nicholas Charles Talbot
  • Patent number: 7982667
    Abstract: Methods and apparatus for processing of data from GNSS receivers are presented. (1) A real-time GNSS rover-engine, a long distance multi baseline averaging (MBA) method, and a stochastic post-processed accuracy predictor are described. (2) The real-time GNSS rover-engine provides high accuracy position determination (decimeter-level) with short occupation time (2 Minutes) for GIS applications. The long distance multi baseline averaging (MBA) method improves differential-correction accuracy by averaging the position results from several different baselines. This technique provides a higher accuracy than any single baseline solution. It was found, that for long baselines (more than about 250 km), the usage of non-iono-free observables (e.g. L1-only or wide-lane) leads to a higher accuracy with MBA compared to the commonly used iono-free (LC) combination, because of the less noisy observables and the cancellation of the residual ionospheric errors.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 19, 2011
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Soeren Ulf Klose
  • Publication number: 20110156949
    Abstract: Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of each of received frequencies of a GNSS signal from a plurality of GNSS satellites are obtained for a plurality of instances in time (3120). The time sequence of observations is fed to a filter to estimate a state vector comprising float ambiguities, wherein each float ambiguity constitutes a non integer estimate of an integer number of wavelengths for a received frequency of a GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received and wherein the float ambiguities of the state vector are updated over time on the basis of the observations (3140). The occurrence of an interruption in tracking of at least one signal of a satellite is determined (3121). The float ambiguity of the state vector for the at least one signal for which an interruption in tracking occurred is maintained at the value before the interruption in tracking occurred (3122).
    Type: Application
    Filed: August 5, 2009
    Publication date: June 30, 2011
    Applicant: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Nicholas Charles Talbot
  • Publication number: 20110148698
    Abstract: Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of GNSS signals are obtained from each of a plurality of GNSS satellites (1120). The observations are fed to a filter having a state vector at least comprising a float ambiguity for each received frequency of the GNSS signals (1140). The filter estimates a float value for each float ambiguity of the state vector. Integer values are assigned to at least a subgroup of the estimated float values to define a plurality of integer ambiguity candidate sets (1160). A quality measure is determined for each of the candidate sets. The best quality measure of the candidate sets is determined. An expectation value of the candidate set having the best quality measure is determined (1 170). An error measure as a ratio of the best quality measure to the expectation value is determined. The quality measures of the candidate sets is adapted as a function of the error measure (1180).
    Type: Application
    Filed: August 5, 2009
    Publication date: June 23, 2011
    Applicant: TRIMBLE NAVIGATION LIMITED
    Inventor: Ulrich Vollath
  • Publication number: 20110140959
    Abstract: Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of a GNSS signal from each of a plurality of GNSS satellites are obtained (4120). The observations are fed to a filter having a state vector at least comprising a float ambiguity for each received frequency of the GNSS signals, each float ambiguity constituting a real number estimate associated with an integer number of wavelengths of the GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received, and the filter being for estimating a float value for each float ambiguity of the state vector (4140). A subset of float ambiguities of the state vector is selected (4150). Integer values are assigned to the estimated float values of the float ambiguities of the subset to define a plurality of integer ambiguity candidate sets (4160). A quality measure is determined for each of the candidate sets. A weighted average of the candidate sets is formed (4200).
    Type: Application
    Filed: August 5, 2009
    Publication date: June 16, 2011
    Applicant: Trimble Navigation Limited
    Inventor: Ulrich Vollath
  • Patent number: 7855678
    Abstract: A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: December 21, 2010
    Assignee: Trimble Navigation Limited
    Inventors: Bruno M. Scherzinger, Joseph J. Hutton, Ulrich Vollath
  • Publication number: 20100253575
    Abstract: Described is a generalized approach for integer parameter estimation, especially in the context of Global Navigation Satellite Systems (GNSS). The problem solved is the case where a definitively correct integer solution cannot be identified for all ambiguity parameters in a reliable way. The proposed solution is to apply a linear transformation to the ambiguities (multiply with a matrix) such that the images of the first and the second candidate (or more) are identical. That way, from the first and second (and possibly more) candidates of the integer least-squares solution, a subset of ambiguity combinations is derived that can be fixed. Thus, it is no longer necessary to choose between the solutions as they coincide for the new ambiguities. The advantage of this approach is maximizing all information still available when finally deriving additional parameters such as position, clock error, atmospheric errors and/or time correlated noise.
    Type: Application
    Filed: October 23, 2008
    Publication date: October 7, 2010
    Applicant: Trimble Navigation Limited
    Inventor: Ulrich Vollath
  • Publication number: 20100214161
    Abstract: Methods and apparatus are presented for determining a position of an antenna of a GNSS rover from observations of GNSS signals collected at the antenna over multiple epochs and from correction data for at least one of the epochs. A first-epoch rover position relative to a moving base location is determined, a second-epoch update of the first-epoch rover position relative to the moving base location for a second epoch is determined using a single-differenced delta phase process, and the first-epoch position and the second-epoch update are combined to obtain a second-epoch rover position relative to a moving base location of the second epoch.
    Type: Application
    Filed: February 20, 2010
    Publication date: August 26, 2010
    Inventors: Nicholas Charles Talbot, Ulrich Vollath
  • Publication number: 20100214162
    Abstract: Methods and apparatus are presented for determining a position of an antenna of a GNSS rover from observations of GNSS signals collected at the antenna over multiple epochs and from correction data for at least one of the epochs. A first-epoch rover position relative to a base location is determined for a first epoch using a single-differencing process based on one of (i) fixed carrier-phase ambiguities and (ii) a weighted average of carrier-phase ambiguity candidates which is converged to a predetermined threshold. A second-epoch rover position relative to a base location is determined for a second epoch using a single-differencing process. A second-epoch update of the first-epoch rover position relative to the base location is determined for the second epoch using a single-differenced delta phase process and the first-epoch rover position is combined with the second-epoch update to obtain a second-epoch delta phase rover position relative to a moving base location of the second epoch.
    Type: Application
    Filed: February 20, 2010
    Publication date: August 26, 2010
    Inventors: Nicholas Charles Talbot, Ulrich Vollath
  • Patent number: 7755542
    Abstract: Methods and apparatus for processing of data from a network of GNSS reference stations are presented. An ionosphere-free, federated geometry filter is employed so that computation time increases only linearly with the increase in number of reference stations, significantly reducing processing time as compared to a centralized filter approach.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: July 13, 2010
    Assignee: Trimble Navigation Limited
    Inventors: Xiaoming Chen, Ulrich Vollath
  • Publication number: 20100169001
    Abstract: A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 1, 2010
    Inventors: Bruno M. Scherzinger, Joseph J. Hutton, Ulrich Vollath
  • Patent number: 7746272
    Abstract: Methods and apparatus are provided for factorized processing of a set of GNSS signal data derived from signals having at least three carriers. A geometry filter is applied to the set of GNSS signal data using a geometry carrier-phase combination to obtain an array of ambiguity estimates for the geometry carrier-phase combination and associated statistical information. A bank of ionosphere filters is applied to the set of GNSS signal data using a geometry-free ionosphere carrier-phase combination to obtain an array of ambiguity estimates for the ionosphere carrier-phase combination and associated statistical information. At least one bank of Quintessence filters is applied to the set of GNSS signal data using a geometry-free and ionosphere-free carrier-phase combination to obtain an array of ambiguity estimates for the geometry-free and ionosphere-free carrier-phase combination and associated statistical information.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: June 29, 2010
    Assignee: Trimble Navigation Limited
    Inventor: Ulrich Vollath
  • Publication number: 20100141515
    Abstract: The present application relates to tracking a position of a device, e.g. for detecting slow and rapid earth deformation, by making use of a recursive filter having the filter characteristic adapted to a detected type of motion. If the motion of the position tracking device is rapid, the filter characteristic is set such that the rapid motion can be tracked with the necessary speed. On the other hand, if the motion is slow, e.g. during times of a normal tectonic drift, the filter characteristic is set such that the motion is slowly tracked with the advantage of efficient noise reduction, i.e. noise in the input signal is effectively barred and does not pass through the filter to the output signal. Thus, in times of rapid motion the convergence speed of the filter output signal to the input signal is set high for fast convergence and in times of slow motion the convergence speed of the filter output signal to the input signal is set low for a slow convergence. The filter may be a Kalman filter.
    Type: Application
    Filed: June 22, 2007
    Publication date: June 10, 2010
    Applicant: Trimble Terrasat GmbH
    Inventors: Ken Doucet, Ulrich Vollath
  • Patent number: 7692578
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 6, 2010
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20100079333
    Abstract: A method and system for delivery of location-dependent time-specific corrections. In one embodiment, a first extended-lifetime correction for a first region is generated. A distribution timetable is used to determine a first time interval for transmitting the first extended-lifetime correction to the first region. The first extended-lifetime correction is then transmitted via a wireless communication network to said first region in accordance with said distribution timetable.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: James M. Janky, Ulrich VOLLATH, Nicholas C. TALBOT
  • Publication number: 20090262013
    Abstract: Methods and apparatus are provided for factorized processing of a set of GNSS signal data derived from signals having at least three carriers. A geometry filter is applied to the set of GNSS signal data using a geometry carrier-phase combination to obtain an array of ambiguity estimates for the geometry carrier-phase combination and associated statistical information. A bank of ionosphere filters is applied to the set of GNSS signal data using a geometry-free ionosphere carrier-phase combination to obtain an array of ambiguity estimates for the ionosphere carrier-phase combination and associated statistical information. At least one bank of Quintessence filters is applied to the set of GNSS signal data using a geometry-free and ionosphere-free carrier-phase combination to obtain an array of ambiguity estimates for the geometry-free and ionosphere-free carrier-phase combination and associated statistical information.
    Type: Application
    Filed: September 30, 2008
    Publication date: October 22, 2009
    Inventor: Ulrich Vollath
  • Publication number: 20090237298
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 24, 2009
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Patent number: 7589668
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 15, 2009
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet