Patents by Inventor Ulrich Vollath

Ulrich Vollath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7576690
    Abstract: Position determination at a rover station on the basis of positioning signals from a plurality of positioning satellites. During normal operation a position of the rover station is determined on the basis of the positioning signal from the positioning satellites and reference data received via a separate connection from a reference station. Upon detecting an outage of the reference data from the reference station, error data at least including satellite clock drifts is obtained from error data transmitter and applied in the determination process in order to eliminate positioning errors introduced by satellite clock drifts that cannot be compensated on the basis of the reference data due to the outage.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 18, 2009
    Assignee: Trimble Navigation Limited
    Inventor: Ulrich Vollath
  • Publication number: 20090184868
    Abstract: Methods and apparatus for processing of data from GNSS receivers are presented. A post-processing engine and a post-processed accuracy predictor are described. The post-processing engine provides high accuracy GNSS (GPS) position determination with short occupation time for GIS applications. The post-processed accuracy predictor calculates during data collection an estimate of the accuracy likely to be achieved after post-processing. This helps to optimize productivity when collecting GNSS data for which post-processed accuracy is important. The predictor examines the quality of carrier measurements and estimates how well the post-processed float solution will converge in the time since carrier lock was obtained.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 23, 2009
    Inventors: Junjie Liu, Ulrich Vollath, Peter Ian West, Soeren Uif Klose
  • Publication number: 20090184869
    Abstract: Computer-implemented methods and apparatus are presented for processing data collected by at least two receivers from multiple satellites of multiple GNSS, where at least one GNSS is FDMA. Data sets are obtained which comprise a first data set from a first receiver and a second data set from a second receiver. The first data set comprises a first FDMA data set and the second data set comprises a second FDMA data set. At least one of a code bias and a phase bias may exist between the first FDMA data set and the second FDMA data set. At least one receiver-type bias is determined, to be applied when the data sets are obtained from receivers of different types. The data sets are processed, based on the at least one receiver-type bias, to estimate carrier floating-point ambiguities. Carrier integer ambiguities are determined from the floating-point ambiguities. The scheme enables GLONASS carrier phase ambiguities to be resolved and used in a combined FDMA/CDMA (e.g., GLONASS/GPS) centimeter-level solution.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 23, 2009
    Inventors: Nicholas Talbot, Ulrich Vollath, Gang Lu
  • Publication number: 20090182502
    Abstract: In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is obtained with a GNSS receiver on-board the LEO satellite. The first position estimate is communicated to a Virtual Reference Station (VRS) processor. VRS corrections are received at the LEO satellite, the VRS corrections having been calculated for the first position estimate by the VRS processor. The VRS corrections are processed on-board the LEO satellite such that a VRS corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.
    Type: Application
    Filed: December 16, 2008
    Publication date: July 16, 2009
    Inventors: Bruce D. Riter, James M. Janky, Nicholas C. Talbot, Ulrich Vollath
  • Publication number: 20090135057
    Abstract: Methods and apparatus for processing of data from GNSS receivers are presented. A real-time GNSS rover-engine, a long distance multi baseline averaging (MBA) method, and a stochastic post-processed accuracy predictor are described. The real-time GNSS rover-engine provides high accuracy position determination (decimeter-level) with short occupation time (2 Minutes) for GIS applications. The long distance multi baseline averaging (MBA) method improves differential-correction accuracy by averaging the position results from several different baselines. This technique provides a higher accuracy than any single baseline solution. It was found, that for long baselines (more than about 250 km), the usage of non-iono-free observables (e.g. L1-only or wide-lane) leads to a higher accuracy with MBA compared to the commonly used iono-free (LC) combination, because of the less noisy observables and the cancellation of the residual ionospheric errors.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 28, 2009
    Inventors: Ulrich Vollath, Soeren Ulf Klose
  • Patent number: 7538721
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: May 26, 2009
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20090109090
    Abstract: Position determination at a rover station on the basis of positioning signals from a plurality of positioning satellites. During normal operation a position of the rover station is determined on the basis of the positioning signal from the positioning satellites and reference data received via a separate connection from a reference station. Upon detecting an outage of the reference data from the reference station, error data at least including satellite clock drifts is obtained from error data transmitter and applied in the determination process in order to eliminate positioning errors introduced by satellite clock drifts that cannot be compensated on the basis of the reference data due to the outage.
    Type: Application
    Filed: December 13, 2007
    Publication date: April 30, 2009
    Inventor: Ulrich Vollath
  • Publication number: 20090093959
    Abstract: A real-time high accuracy position and orientation system (RT-HAPOS) system for a vehicle, such as an aircraft, comprises a global navigation satellite system (GNSS) receiver disposed on the vehicle and an integrated inertial navigation (IIN) module disposed on the vehicle. The GNSS receiver generates GNSS position data indicating approximate positions of the vehicle during a data acquisition period in which the vehicle is moving. The IIN module executes a real-time kinematic (RTK) algorithm during the data acquisition period to generate output position data indicating positions of the vehicle at a greater precision than the GNSS position data, based on the GNSS position data, inertial measurement data acquired on the vehicle during the data acquisition period, and a set of virtual reference station (VRS) observables received during the data acquisition period from a remote source external to the vehicle, where the VRS observables are based on the GNSS position data.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Applicant: Trimble Navigation Limited
    Inventors: Bruno M. Scherzinger, Joseph J. Hutton, Ulrich Vollath
  • Patent number: 7498979
    Abstract: Methods and apparatus for processing of data from GNSS receivers are presented. A post-processing engine and a post-processed accuracy predictor are described. The post-processing engine provides high accuracy GNSS (GPS) position determination with short occupation time for GIS applications. The post-processed accuracy predictor calculates during data collection an estimate of the accuracy likely to be achieved after post-processing. This helps to optimize productivity when collecting GNSS data for which post-processed accuracy is important. The predictor examines the quality of carrier measurements and estimates how well the post-processed float solution will converge in the time since carrier lock was obtained.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: March 3, 2009
    Assignee: Trimble Navigation Limited
    Inventors: Junjie Liu, Ulrich Vollath, Peter Ian West, Soeren Ulf Klose
  • Publication number: 20090027264
    Abstract: Methods and apparatus for processing of data from a network of GNSS reference stations are presented. An ionosphere-free, federated geometry filter is employed so that computation time increases only linearly with the increase in number of reference stations, significantly reducing processing time as compared to a centralized filter approach.
    Type: Application
    Filed: March 7, 2007
    Publication date: January 29, 2009
    Inventors: Xiaoming Chen, Ulrich Vollath
  • Publication number: 20080284643
    Abstract: A method of generating post-mission position and orientation data comprises generating position and orientation data representing positions and orientations of a mobile platform, based on global navigation satellite system (GNSS) data and inertial navigation system (INS) data acquired during a data acquisition period by the mobile platform, using a network real-time kinematic (RTK) subsystem to generate correction data associated with the data acquisition period, and correcting the position and orientation data based on the correction data. The RTK subsystem may implement a virtual reference station (VRS) technique to generate the correction data.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Inventors: Bruno M. Scherzinger, Joseph J. Hutton, Ulrich Vollath
  • Patent number: 7432853
    Abstract: Methods and apparatus are provided for factorized processing of a set of GNSS signal data derived from signals having at least three carriers. A geometry filter is applied to the set of GNSS signal data using a geometry carrier-phase combination to obtain an array of ambiguity estimates for the geometry carrier-phase combination and associated statistical information. A bank of ionosphere filters is applied to the set of GNSS signal data using a geometry-free ionosphere carrier-phase combination to obtain an array of ambiguity estimates for the ionosphere carrier-phase combination and associated statistical information. At least one bank of Quintessence filters is applied to the set of GNSS signal data using a geometry-free and ionosphere-free carrier-phase combination to obtain an array of ambiguity estimates for the geometry-free and ionosphere-free carrier-phase combination and associated statistical information.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 7, 2008
    Assignee: Trimble Navigation Limited
    Inventor: Ulrich Vollath
  • Publication number: 20080165055
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: November 12, 2007
    Publication date: July 10, 2008
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20080165053
    Abstract: Methods and apparatus for processing of data from GNSS receivers are presented. A post-processing engine and a post-processed accuracy predictor are described. The post-processing engine provides high accuracy GNSS (GPS) position determination with short occupation time for GIS applications. The post-processed accuracy predictor calculates during data collection an estimate of the accuracy likely to be achieved after post-processing. This helps to optimize productivity when collecting GNSS data for which post-processed accuracy is important. The predictor examines the quality of carrier measurements and estimates how well the post-processed float solution will converge in the time since carrier lock was obtained.
    Type: Application
    Filed: April 9, 2007
    Publication date: July 10, 2008
    Inventors: Junjie Liu, Ulrich Vollath, Peter Ian West, Soeren Ulf Klose
  • Publication number: 20080165054
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: November 12, 2007
    Publication date: July 10, 2008
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Patent number: 7312747
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: December 25, 2007
    Assignee: Trimble Navigation Limited
    Inventors: Ulrich Vollath, Kenneth Donald Doucet
  • Publication number: 20070120733
    Abstract: Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g.
    Type: Application
    Filed: September 26, 2006
    Publication date: May 31, 2007
    Inventors: Ulrich Vollath, Kenneth Doucet
  • Publication number: 20050101248
    Abstract: Methods and apparatus are provided for factorized processing of a set of GNSS signal data derived from signals having at least three carriers. A geometry filter is applied to the set of GNSS signal data using a geometry carrier-phase combination to obtain an array of ambiguity estimates for the geometry carrier-phase combination and associated statistical information. A bank of ionosphere filters is applied to the set of GNSS signal data using a geometry-free ionosphere carrier-phase combination to obtain an array of ambiguity estimates for the ionosphere carrier-phase combination and associated statistical information. At least one bank of Quintessence filters is applied to the set of GNSS signal data using a geometry-free and ionosphere-free carrier-phase combination to obtain an array of ambiguity estimates for the geometry-free and ionosphere-free carrier-phase combination and associated statistical information.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 12, 2005
    Inventor: Ulrich Vollath