Patents by Inventor Ulrich von Andrian

Ulrich von Andrian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130129790
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: October 12, 2012
    Publication date: May 23, 2013
    Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich Von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
  • Publication number: 20130101597
    Abstract: The instant invention is based, at least in part, on the discovery that CXCR6 plays a critical role in antigen-specific effector function of NK cells. Accordingly, the invention provides, among other things, methods for modulation of antigen-specific NK cell effector function, methods for identifying modulators of antigen-specific NK cell effector function.
    Type: Application
    Filed: December 1, 2010
    Publication date: April 25, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Ulrich Von Andrian, Silke Paust
  • Patent number: 8343498
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: January 1, 2013
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College
    Inventors: Frank Alexis, Matteo Iannacone, Jinjun Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
  • Patent number: 8343497
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: January 1, 2013
    Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Massachusetts Institute of Technology
    Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
  • Patent number: 8277812
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 2, 2012
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard College, The Brigham and Women's Hospital, Inc.
    Inventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
  • Publication number: 20120087890
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising such nanocarriers. The present invention provides methods of designing, manufacturing maceutical compositions thereof.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 12, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Elliott Ashley Moseman, Jinjun Shi, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
  • Publication number: 20110268805
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 3, 2011
    Inventors: Frank Alexis, Matteo Iannacone, Jinjin Shi, Pamela Basto, Elliott Ashley Moseman, Ulrich von Andrian, Robert S. Langer, Omid C. Farokhzad, Elena Tonti
  • Publication number: 20110268804
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising nanocarriers. The present invention provides methods of designing, manufacturing, and using nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 3, 2011
    Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Elliott Ashley Moseman, Pamela Basto, Robert S. Langer, Omid C. Farokhzad, Ulrich von Andrian, Elena Tonti
  • Publication number: 20100183727
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides synthetic nanocarriers capable of eliciting an immune system response in the form of antibody production, wherein the nanocarriers lack any T cell antigens. In some embodiments, the invention provides nanocarriers that comprise an immunofeature surface, which provides high avidity binding of the nanocarriers to antigen presenting cells. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: April 22, 2009
    Publication date: July 22, 2010
    Inventors: Matteo Iannacone, Frank Alexis, Pamela Basto, Ashley Moseman, Jinjun Shi, Robert Langer, Omid C. Farokhzad, Ulrich von Andrian
  • Publication number: 20100129392
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface. The nanocarriers are capable of targeting antigen presenting cells when administered to a subject. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: April 22, 2009
    Publication date: May 27, 2010
    Inventors: Jinjun Shi, Frank Alexis, Matteo Iannacone, Ashley Moseman, Pamela Basto, Robert Langer, Omid C. Farokhzad, Ulrich von Andrian
  • Publication number: 20100129439
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface and an immunostimulatory moiety. In some embodiments, the immunostimulatory moiety is an adjuvant. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof.
    Type: Application
    Filed: April 22, 2009
    Publication date: May 27, 2010
    Inventors: Frank Alexis, Jinjun Shi, Matteo Iannacone, Ashley Moseman, Pamela Basto, Robert Langer, Omid C. Farokhzad, Ulrich von Andrian
  • Publication number: 20100092425
    Abstract: The present invention provides compositions and systems for delivery of nanocarriers to cells of the immune system. The invention provides nanocarriers capable of stimulating an immune response in T cells and/or in B cells. The invention provides nanocarriers that comprise an immunofeature surface having a plurality of nicotine moieties. The invention provides pharmaceutical compositions comprising inventive nanocarriers. The present invention provides methods of designing, manufacturing, and using inventive nanocarriers and pharmaceutical compositions thereof. For example, the present invention nanocarriers capable of eliciting an immune response and the production of anti-nicotine antibodies.
    Type: Application
    Filed: April 22, 2009
    Publication date: April 15, 2010
    Inventors: Ulrich von Andrian, Omid Farokhzad, Frank Alexis, Matteo Iannacone, Pamela Basto, Jinjun Shi, Ashley Moseman, Robert Langer
  • Publication number: 20070003558
    Abstract: Methods for treating multiple myeloma with inhibitors of CXCR4 are described. The decreased expression of CXCR4 on multiple myeloma cells according to the invention results in decreased homing of the cells to the bone marrow and a reduction in the development of the disease. Also disclosed are pharmaceutical compositions incorporating such inhibitors for use in the therapeutic treatment of multiple myeloma. The treatment methods described herein can be used independently, or in conjunction with, other therapies for the treatment of multiple myeloma.
    Type: Application
    Filed: April 24, 2006
    Publication date: January 4, 2007
    Inventors: Ulrich von Andrian, Irina Mazo, Jean-Marc Gauguet
  • Patent number: 6929792
    Abstract: The invention provides isolated dendritic cells genetically modified to express a selectin polypeptide, optionally treated with activated platelets or membrane microparticles thereof. The invention also provides isolated platelet modified dendritic cells. Methods for delivering the modified dendritic cells to peripheral lymph nodes and methods for using the modified dendritic cells to stimulate immune responses also are provided. Vaccine compositions containing the modified dendritic cells also are provided.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: August 16, 2005
    Assignees: The Brigham & Women's Hospital, Inc., The CBR Institute for Biomedical Research, Inc.
    Inventors: Thomas S. Kupper, Ulrich Von Andrian, Caroline Robert
  • Patent number: 6191103
    Abstract: It has been found that agents which inhibit the interaction between the band 3 protein and its ligand (hereafter sometimes referred to as “interaction inhibitors” or “inhibitors”), CD36/thrombospondin, can also be used to enhance thrombolysis. The inhibitors can be peptides which contain sequences present in exofacial loops of the band 3 protein, or can be non-natural, D-isomer forms of the same sequences, or can be peptides, peptidomimetics, or non-peptidic molecules which interfere with band 3 protein—ligand interactions. One preferred group of such inhibitors comprises peptides characterized by the sequence motif Z2Z3Z2UX−UUUX− (SEQ ID NO:44), wherein Z2 represents a hydrophobic residue, U represents unobstructive residues, Z3 is either Z2 or an unobstructive residue and X− represents negatively charged residues.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: February 20, 2001
    Assignees: The Regents of the University of California, Center for Blood Research
    Inventors: Stephen B. Shohet, Irwin Sherman, Ulrich von Andrian