Patents by Inventor Vadim Pinskiy

Vadim Pinskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11669078
    Abstract: Aspects of the disclosed technology encompass the use of a deep learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving a plurality of control values from two or more stations, at a deep learning controller, wherein the control values are generated at the two or more stations deployed in a manufacturing process, predicting an expected value for an intermediate or final output of an article of manufacture, based on the control values, and determining if the predicted expected value for the article of manufacture is in-specification. In some aspects, the process can further include steps for generating control inputs if the predicted expected value for the article of manufacture is not in-specification. Systems and computer-readable media are also provided.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: June 6, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Damas Limoge
  • Patent number: 11662563
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: May 30, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Patent number: 11663327
    Abstract: A controller emulator, coupled to an interface that exposes the controller emulator to inputs from external sources, provides one or more control signals to a process simulator and a deep learning process. In response, the process simulator simulates response data that is provided to the deep learning processor. The deep learning processor generates expected response data and expected behavioral pattern data for the one or more control signals, as well as actual behavioral pattern data for the simulated response data. A comparison of at least one of the simulated response data to the expected response data and the actual behavioral pattern data to the expected behavioral pattern data is performed to determine whether anomalous activity is detected. As a result of detecting anomalous activity, one or more operations are performed to address the anomalous activity.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: May 30, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Andrew Sundstrom, James Williams, III
  • Publication number: 20230113528
    Abstract: An automatic focus system for an optical microscope that facilitates faster focusing by using at least two offset focusing cameras. Each offset focusing camera can be positioned on a different side of an image forming conjugate plane so that their sharpness curves intersect at the image forming conjugate plane. Focus of a specimen can be adjusted by using sharpness values determined from images taken by the offset focusing cameras.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 13, 2023
    Applicant: Nanotronics Imaging, Inc.
    Inventors: John B. Putman, Matthew C. Putman, Vadim Pinskiy, Denis Y. Sharoukhov
  • Patent number: 11574413
    Abstract: An imaging system is disclosed herein. The imaging system includes an imaging apparatus and a computing system. The imaging apparatus includes a plurality of light sources positioned at a plurality of positions and a plurality of angles relative to a stage configured to support a specimen. The imaging apparatus is configured to capture a plurality of images of a surface of the specimen. The computing system in communication with the imaging apparatus. The computing system configured to generate a 3D-reconstruction of the surface of the specimen by receiving, from the imaging apparatus, the plurality of images of the surface of the specimen, generating, by the imaging apparatus via a deep learning model, a height map of the surface of the specimen based on the plurality of images, and outputting a 3D-reconstruction of the surface of the specimen based on the height map generated by the deep learning model.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: February 7, 2023
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Tanaporn Na Narong, Denis Sharoukhov, Tonislav Ivanov
  • Publication number: 20220391641
    Abstract: A computing system generates a training data set for training the prediction model to detect defects present in a target surface of a target specimen and training the prediction model to detect defects present in the target surface of the target specimen based on the training data set. The computing system generates the training data set by identifying a set of images for training the prediction model, the set of images comprising a first subset of images. A deep learning network generates a second subset of images for subsequent labelling based on the set of images comprising the first subset of images. The deep learning network generates a third subset of images for labelling based on the set of images comprising the first subset of images and the labeled second subset of images. The computing system continues the process until a threshold number of labeled images is generated.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Tonislav Ivanov, Denis Babeshko, Vadim Pinskiy, Matthew C. Putman, Andrew Sundstrom
  • Patent number: 11520133
    Abstract: An automatic focus system for an optical microscope that facilitates faster focusing by using at least two offset focusing cameras. Each offset focusing camera can be positioned on a different side of an image forming conjugate plane so that their sharpness curves intersect at the image forming conjugate plane. Focus of a specimen can be adjusted by using sharpness values determined from images taken by the offset focusing cameras.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 6, 2022
    Assignee: Nanotronics Imaging, Inc.
    Inventors: John B. Putman, Matthew C. Putman, Vadim Pinskiy, Denis Y. Sharoukhov
  • Publication number: 20220269254
    Abstract: A computing system identifies a trajectory example generated by a human operator. The trajectory example includes trajectory information of the human operator while performing a task to be learned by a control system of the computing system. Based on the trajectory example, the computing system trains the control system to perform the task exemplified in the trajectory example. Training the control system includes generating an output trajectory of a robot performing the task. The computing system identifies an updated trajectory example generated by the human operator based on the trajectory example and the output trajectory of the robot performing the task. Based on the updated trajectory example, the computing system continues to train the control system to perform the task exemplified in the updated trajectory example.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 25, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Andrew Sundstrom, Damas Limoge, Vadim Pinskiy, Aswin Raghav Nirmaleswaran, Eun-Sol Kim
  • Patent number: 11416711
    Abstract: A computing system generates a training data set for training the prediction model to detect defects present in a target surface of a target specimen and training the prediction model to detect defects present in the target surface of the target specimen based on the training data set. The computing system generates the training data set by identifying a set of images for training the prediction model, the set of images comprising a first subset of images. A deep learning network generates a second subset of images for subsequent labelling based on the set of images comprising the first subset of images. The deep learning network generates a third subset of images for labelling based on the set of images comprising the first subset of images and the labeled second subset of images. The computing system continues the process until a threshold number of labeled images is generated.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: August 16, 2022
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Tonislav Ivanov, Denis Babeshko, Vadim Pinskiy, Matthew C. Putman, Andrew Sundstrom
  • Publication number: 20220221703
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Patent number: 11335443
    Abstract: The application of deep machine learning controllers to derive models of phenotypic patient data from primary economic data is disclosed herein. The use of systems and methods of employing the model are disclosed and useful in predicting treatment outcomes and compound efficacy, suggesting treatment plans and compounds, and clinical studies and phenotypical correlation studies in conjunction with medical records, economic data sets or combinations thereof.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: May 17, 2022
    Assignee: OpenNano Pte. Ltd.
    Inventors: Vadim Pinskiy, Ashwin Gopinath, Kim E. Drexler, TJ Brunette, George Markou, Serge Faguet, Petr Boiko, Yuliya Seregina
  • Publication number: 20220121169
    Abstract: Aspects of the disclosed technology provide a computational model that utilizes machine learning for detecting errors during a manual assembly process and determining a sequence of steps to complete the manual assembly process in order to mitigate the detected errors. In some implementations, the disclosed technology evaluates a target object at a step of an assembly process where an error is detected to a nominal object to obtain a comparison. Based on this comparison, a sequence of steps for completion of the assembly process of the target object is obtained. The assembly instructions for creating the target object are adjusted based on this sequence of steps.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-Sol Kim, Andrew Sundstrom
  • Patent number: 11294162
    Abstract: A fluorescence microscopy inspection system includes light sources able to emit light that causes a specimen to fluoresce and light that does not cause a specimen to fluoresce. The emitted light is directed through one or more filters and objective channels towards a specimen. A ring of lights projects light at the specimen at an oblique angle through a darkfield channel. One of the filters may modify the light to match a predetermined bandgap energy associated with the specimen and another filter may filter wavelengths of light reflected from the specimen and to a camera. The camera may produce an image from the received light and specimen classification and feature analysis may be performed on the image.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 5, 2022
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Denis Sharoukhov
  • Publication number: 20220043420
    Abstract: Aspects of the disclosed technology provide an Artificial Intelligence Process Control (AIPC) for automatically detecting errors in a manufacturing workflow of an assembly line process, and performing error mitigation through the update of instructions or guidance given to assembly operators at various stations. In some implementations, the disclosed technology utilizes one or more machine-learning models to perform error detection and/or propagate instructions/assembly modifications necessary to rectify detected errors or to improve the product of manufacture.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-Sol Kim, Andrew Sundstrom
  • Publication number: 20220024140
    Abstract: Systems, methods, and media for additive manufacturing are provided. In some embodiments, an additive manufacturing system comprises: a hardware processor that is configured to: receive a captured image; apply a trained failure classifier to a low-resolution version of the captured image; determine that a non-recoverable failure is not present in the printed layer of the object; generate a cropped version of the low-resolution version of the captured image; apply a trained binary error classifier to the cropped version of the low-resolution version of the captured image; determine that an error is present in the printed layer of the object; apply a trained extrusion classifier to the captured image, wherein the trained extrusion classifier generates an extrusion quality score; and adjust a value of a parameter of the print head based on the extrusion quality score to print a subsequent layer of the printed object.
    Type: Application
    Filed: August 6, 2021
    Publication date: January 27, 2022
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Vadim Pinskiy, Matthew C. Putman, Damas Limoge, Aswin Raghav Nirmaleswaran
  • Publication number: 20220024986
    Abstract: The present invention provides bi-stable functionalized organic molecule and methods of utilizing these bi-stable functionalized organic molecule.
    Type: Application
    Filed: June 9, 2021
    Publication date: January 27, 2022
    Inventors: Kim E. Drexler, Serge Faguet, Ashwin Gopinath, Vadim Pinskiy, Tj Brunette, George Markou
  • Patent number: 11209795
    Abstract: Aspects of the disclosed technology provide a computational model that utilizes machine learning for detecting errors during a manual assembly process and determining a sequence of steps to complete the manual assembly process in order to mitigate the detected errors. In some implementations, the disclosed technology evaluates a target object at a step of an assembly process where an error is detected to a nominal object to obtain a comparison. Based on this comparison, a sequence of steps for completion of the assembly process of the target object is obtained. The assembly instructions for creating the target object are adjusted based on this sequence of steps.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: December 28, 2021
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, Eun-Sol Kim, Andrew Sundstrom
  • Publication number: 20210394456
    Abstract: A manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a computing system. The computing system receives an image of the product at a step of the multi-step manufacturing process. The computing system determines a current state of the product based on the image of the product. The computing system determines, via a deep learning model, that the product is not within specification based on the current state of the product and the image of the product. Based on the determining, the computing system adjusts a control logic for at least a following station. The adjusting includes generating, by the deep learning model, a corrective action to be performed by the following station.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 23, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Fabian Hough, John B. Putman, Matthew C. Putman, Vadim Pinskiy, Damas Limoge, Aswin Raghav Nirmaleswaran, Sadegh Nouri Gooshki
  • Publication number: 20210387421
    Abstract: Additive manufacturing systems using artificial intelligence can identify an anomaly in a printed layer of an object from a generated topographical image of the printed layer. The additive manufacturing systems can also use artificial intelligence to determine a correlation between the identified anomaly and one or more print parameters, and adaptively adjust one or more print parameters. The additive manufacturing systems can also use artificial intelligence to optimize one or more printing parameters to achieve desired mechanical, optical and/or electrical properties.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 16, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, Vadim Pinskiy, James Williams, III, Damas Limoge, Aswin Raghav Nirmaleswaran, Mario Chris
  • Publication number: 20210382990
    Abstract: A system including a deep learning processor receives one or more control signals from one or more of a factory's process, equipment and control (P/E/C) systems during a manufacturing process. The processor generates expected response data and expected behavioral pattern data for the control signals. The processor receives production response data from the one or more of the factory's P/E/C systems and generates production behavioral pattern data for the production response data. The process compares at least one of: the production response data to the expected response data, and the production behavioral pattern data to the expected behavioral pattern data to detect anomalous activity. As a result of detecting anomalous activity, the processor performs one or more operations to provide notice or cause one or more of the factory's P/E/C systems to address the anomalous activity.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Applicant: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, Vadim Pinskiy, Damas Limoge, Andrew Sundstrom, James Williams, III