Patents by Inventor Valluri R. Rao

Valluri R. Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240194533
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Application
    Filed: December 19, 2023
    Publication date: June 13, 2024
    Applicant: Intel Corporation
    Inventors: Valluri R. RAO, Patrick MORROW, Rishabh MEHANDRU, Doug INGERLY, Kimin JUN, Kevin O'BRIEN, Paul FISCHER, Szuya S. LIAO, Bruce BLOCK
  • Patent number: 11854894
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Valluri R. Rao, Patrick Morrow, Rishabh Mehandru, Doug Ingerly, Kimin Jun, Kevin O'Brien, Paul Fischer, Szuya S. Liao, Bruce Block
  • Patent number: 11421376
    Abstract: Embodiments of the invention include an active fiber with a piezoelectric layer that has a crystallization temperature that is greater than a melt or draw temperature of the fiber and methods of forming such active fibers. According to an embodiment, a first electrode is formed over an outer surface of a fiber. Embodiments may then include depositing a first amorphous piezoelectric layer over the first electrode. Thereafter, the first amorphous piezoelectric layer may be crystallized with a pulsed laser annealing process to form a first crystallized piezoelectric layer. In an embodiment, the pulsed laser annealing process may include exposing the first amorphous piezoelectric layer to radiation from an excimer laser with an energy density between approximately 10 and 100 mJ/cm2 and pulse width between approximately 10 and 50 nanoseconds. Embodiments may also include forming a second electrode over an outer surface of the crystallized piezoelectric layer.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Feras Eid, Aleksandar Aleksov, Sasha N. Oster, Baris Bicen, Thomas L. Sounart, Valluri R. Rao, Johanna M. Swan
  • Patent number: 11222863
    Abstract: Embodiments of the present disclosure describe techniques for fabricating a stacked integrated circuit (IC) device. A first wafer that includes a plurality of first IC dies may be sorted to identify first known good dies of the plurality of first IC dies. The first wafer may be diced to singulate the first IC dies. A second wafer that includes a plurality of second IC dies may be sorted to identify second know good dies of the plurality of second IC dies. The first known good dies may be bonded to respective second known good dies of the second wafer. In some embodiments, the first known good dies may be thinned after bonding the first know good dies to the second wafer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Fay Hua, Christopher M. Pelto, Valluri R. Rao, Mark T. Bohr, Johanna M. Swan
  • Publication number: 20210193613
    Abstract: Embodiments of the present disclosure describe techniques for fabricating a stacked integrated circuit (IC) device. A first wafer that includes a plurality of first IC dies may be sorted to identify first known good dies of the plurality of first IC dies. The first wafer may be diced to singulate the first IC dies. A second wafer that includes a plurality of second IC dies may be sorted to identify second know good dies of the plurality of second IC dies. The first known good dies may be bonded to respective second known good dies of the second wafer. In some embodiments, the first known good dies may be thinned after bonding the first know good dies to the second wafer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: April 1, 2016
    Publication date: June 24, 2021
    Inventors: Fay HUA, Christopher M. PELTO, Valluri R. RAO, Mark T. BOHR, Johanna M. SWAN
  • Publication number: 20210175124
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 10, 2021
    Applicant: Intel Corporation
    Inventors: Valluri R. RAO, Patrick MORROW, Rishabh MEHANDRU, Doug INGERLY, Kimin JUN, Kevin O'BRIEN, Paul FISCHER, Szuya S. LIAO, Bruce BLOCK
  • Patent number: 11016288
    Abstract: Embodiments of the invention include a display formed on an organic substrate and methods of forming such a device. According to an embodiment, an array of pixel mirrors may be formed on the organic substrate. For example, each of the pixel mirrors is actuatable about one or more axes out of the plane of the organic substrate. Additionally, embodiments of the invention may include an array of routing mirrors formed on the organic substrate. According to an embodiment, each of the routing mirrors is actuatable about two axes out of the plane of the organic substrate. In embodiments of the invention, a light source may be used for emitting light towards the array of routing mirrors. For example, light emitted from the light source may be reflected to one or more of the pixel mirrors by one of the routing mirrors.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Feras Eid, Johanna M. Swan, Thomas L. Sounart, Aleksandar Aleksov, Shawna M. Liff, Baris Bicen, Valluri R. Rao
  • Patent number: 10969574
    Abstract: Embodiments of the invention include a piezo-electric mirror in an microelectronic package and methods of forming the package. According to an embodiment the microelectronic package may include an organic substrate with a cavity formed in the organic substrate. In some embodiments, an actuator is anchored to the organic substrate and extends over the cavity. For example, the actuator may include a first electrode and a piezo-electric layer formed on the first electrode. A second electrode may be formed on the piezo-electric layer. Additionally, a mirror may be formed on the actuator. Embodiments allow for the piezo-electric layer to be formed on an organic package substrate by using low temperature crystallization processes. For example, the piezo-electric layer may be deposited in an amorphous state. Thereafter, a laser annealing process that includes a pulsed laser may be used to crystallize the piezo-electric layer.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: April 6, 2021
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Feras Eid, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov, Thomas L. Sounart, Baris Bicen, Valluri R. Rao
  • Patent number: 10969576
    Abstract: Disclosed herein are maskless imaging tools and display systems that include piezoelectrically actuated mirrors and methods of forming such devices. The maskless imaging tool may include a light source. Additionally, the tool may include one or more piezoelectrically actuated mirrors for receiving light from the light source. The piezoelectrically actuated mirrors are actuatable about one or more axes to reflect the light from the light source to a workpiece positioned to receive light from the piezoelectrically actuated mirror. Disclosed herein is a maskless imaging tool that is a laser direct imaging lithography (LDIL) tool. The maskless imaging tool may also be a via-drill tool. Disclosed herein is also a piezoelectrically actuated mirror used in a projection system. For example, the projection system may be integrated into a pair of glasses.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: April 6, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Feras Eid, Sasha N. Oster, Shawna M. Liff, Johanna M. Swan, Thomas L. Sounart, Baris Bicen, Valluri R. Rao
  • Patent number: 10943836
    Abstract: A complementary metal oxide semiconductor (CMOS) device that includes a gallium nitride n-type MOS and a silicon P-type MOS is disclosed. The device includes silicon 111 substrate, a gallium nitride transistor formed in a trench in the silicon 111 substrate, the gallium nitride transistor comprising a source electrode, a gate electrode, and a drain electrode. The device further includes a silicon/polysilicon layer formed over the gallium nitride transistor.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 9, 2021
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Valluri R. Rao, Han Wui Then
  • Patent number: 10903818
    Abstract: Embodiments of the invention include a piezoelectric package integrated filtering device that includes a film stack. In one example, the film stack includes a first electrode, a piezoelectric material in contact with the first electrode, and a second electrode in contact with the piezoelectric material. The film stack is suspended with respect to a cavity of an organic substrate having organic material and the film stack generates an acoustic wave to be propagated across the film stack in response to an application of an electrical signal between the first and second electrodes.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 26, 2021
    Assignee: Intel Corporation
    Inventors: Vijay K. Nair, Feras Eid, Adel A. Elsherbini, Telesphor Kamgaing, Georgios C. Dogiamis, Valluri R. Rao, Johanna M. Swan
  • Patent number: 10897238
    Abstract: Embodiments of the invention include a filtering device that includes a first electrode, a piezoelectric material in contact with the first electrode, and a second electrode in contact with the piezoelectric material. The piezoelectric filtering device expands and contracts laterally in a plane of an organic substrate in response to application of an electrical signal between the first and second electrodes.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 19, 2021
    Assignee: Intel Corporation
    Inventors: Feras Eid, Georgios C. Dogiamis, Valluri R. Rao, Adel A. Elsherbini, Johanna M. Swan, Telesphor Kamgaing, Vijay K. Nair
  • Patent number: 10872820
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Bruce Block, Valluri R. Rao, Patrick Morrow, Rishabh Mehandru, Doug Ingerly, Kimin Jun, Kevin O'Brien, Paul Fischer, Szyua S. Liao
  • Patent number: 10816733
    Abstract: Embodiments of the invention include an optical routing device that includes an organic substrate. According to an embodiment, an array of cavities are formed into the organic substrate and an array of piezoelectrically actuated mirrors may be anchored to the organic substrate with each piezoelectrically actuated mirror extending over a cavity. In order to properly rout incoming optical signals, the optical routing device may also include a routing die mounted on the organic substrate. The routing die may be electrically coupled to each of the piezoelectrically actuated mirrors and is able to generated a voltage across the first and second electrodes of each piezoelectrically actuated mirror. Additionally, a photodetector may be electrically coupled to the routing die. According to an embodiment, an array of fiber optic cables may be optically coupled with one of the piezoelectrically actuated mirrors and optically coupled with the photodetector.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Johanna M. Swan, Feras Eid, Thomas L. Sounart, Aleksandar Aleksov, Shawna M. Liff, Baris Bicen, Valluri R. Rao
  • Publication number: 20200286789
    Abstract: A complementary metal oxide semiconductor (CMOS) device that includes a gallium nitride n-type MOS and a silicon P-type MOS is disclosed. The device includes silicon 111 substrate, a gallium nitride transistor formed in a trench in the silicon 111 substrate, the gallium nitride transistor comprising a source electrode, a gate electrode, and a drain electrode. The device further includes a silicon/polysilicon layer formed over the gallium nitride transistor.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Valluri R. Rao, Han Wui Then
  • Patent number: 10763248
    Abstract: The electrical and electrochemical properties of various semiconductors may limit the usefulness of various semiconductor materials for one or more purposes. A completed gallium nitride (GaN) semiconductor layer containing a number of GaN power management integrated circuit (PMIC) dies may be bonded to a completed silicon semiconductor layer containing a number of complementary metal oxide (CMOS) control circuit dies. The completed GaN layer and the completed silicon layer may be full size (e.g., 300 mm). A layer transfer operation may be used to bond the completed GaN layer to the completed silicon layer. The layer transfer operation may be performed on full size wafers. After slicing the full size wafers a large number of multi-layer dies, each having a GaN die layer transferred to a silicon die may be produced.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Sansaptak W. Dasgupta, Marko Radosavljevic, Han Wui Then, Ravi Pillarisetty, Kimin Jun, Patrick Morrow, Valluri R. Rao, Paul B. Fischer, Robert S. Chau
  • Publication number: 20200227396
    Abstract: The electrical and electrochemical properties of various semiconductors may limit the usefulness of various semiconductor materials for one or more purposes. A completed gallium nitride (GaN) semiconductor layer containing a number of GaN power management integrated circuit (PMIC) dies may be bonded to a completed silicon semiconductor layer containing a number of complementary metal oxide (CMOS) control circuit dies. The completed GaN layer and the completed silicon layer may be full size (e.g., 300 mm). A layer transfer operation may be used to bond the completed GaN layer to the completed silicon layer. The layer transfer operation may be performed on full size wafers. After slicing the full size wafers a large number of multi-layer dies, each having a GaN die layer transferred to a silicon die may be produced.
    Type: Application
    Filed: September 24, 2015
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Sansaptak W. DASGUPTA, Marko RADOSAVLJEVIC, Han Wui THEN, Ravi PILLARISETTY, Kimin JUN, Patrick MORROW, Valluri R. RAO, Paul B. FISCHER, Robert S. CHAU
  • Patent number: 10707136
    Abstract: This disclosure is directed to a complementary metal oxide semiconductor (CMOS) transistor that includes a gallium nitride n-type MOS and a silicon P-type MOS. The transistor includes silicon 111 substrate, a gallium nitride transistor formed in a trench in the silicon 111 substrate, the gallium nitride transistor comprising a source electrode, a gate electrode, and a drain electrode; a polysilicon layer formed on the gallium nitride transistor, the polysilicon layer coplanar with a top side of the silicon 111 substrate; a first metal via disposed on the source electrode; a second metal via disposed on the gate electrode and isolated from the first metal via by a polysilicon layer; a first trench contact formed on the first metal via; and a second trench contact formed on the second metal via; the first trench contact isolated from the second trench contact by at least one replacement metal gate (RMG) polysilicon island.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Valluri R. Rao, Han Wui Then
  • Patent number: 10658566
    Abstract: Embodiments of the invention include piezoelectrically driven switches that are used for modifying a background color or light source color in display systems, and methods of forming such devices. In an embodiment, a piezoelectrically actuated switch for modulating a background color in a display may include a photonic crystal that has a plurality of blinds oriented substantially perpendicular to a surface of the display. In an embodiment, the blinds include a black surface and a white surface. The switch may also include an anchor spaced away from an edge of the photonic crystal and a piezoelectric actuator formed on the surface of the anchor and a surface of the photonic crystal. Some embodiments may include a photonic crystal that is a multi-layer polymeric structure or a polymer chain with a plurality of nanoparticles spaced at regular intervals on the polymer chain.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Feras Eid, Aleksandar Aleksov, Sasha N. Oster, Baris Bicen, Thomas L. Sounart, Johanna M. Swan, Adel A. Elsherbini, Valluri R. Rao
  • Patent number: 10649158
    Abstract: Embodiments of the invention include an optoelectronic package that allows for in situ alignment of optical fibers. In an embodiment, the optoelectronic package may include an organic substrate. Embodiments include a cavity formed into the organic substrate. Additionally, the optoelectronic package may include an actuator formed on the organic substrate that extends over the cavity. In one embodiment, the actuator may include a first electrode, a piezoelectric layer formed on the first electrode, and a second electrode formed on the piezoelectric layer. According to an additional embodiment of the invention, the actuator may include a first portion and a second portion. In order to allow for resistive heating and actuation driven by thermal expansion, a cross-sectional area of the first portion of the beam may be greater than a cross-sectional area of the second portion of the beam.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Johanna M. Swan, Aleksandar Aleksov, Sasha N. Oster, Feras Eid, Baris Bicen, Thomas L. Sounart, Shawna M. Liff, Valluri R. Rao