Patents by Inventor Vamsi Paruchuri

Vamsi Paruchuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7919379
    Abstract: The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Rashmi Jha, Sivananda Kanakasabapathy, Xi Li, Renee T. Mo, Vijay Narayanan, Vamsi Paruchuri, Mark T. Robson, Kathryn T. Schonenberg, Michelle L. Steen, Richard Wise, Ying Zhang
  • Patent number: 7880243
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators and metal containing gates. The metal layers of the gates in both the NFET and PFET devices have been fabricated from a single common metal layer. Due to the single common metal, device fabrication is simplified, requiring a reduced number of masks. Also, as a further consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted to each other in direct physical contact. Device thresholds are adjusted by the choice of the common metal material and oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20110001195
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 6, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7863126
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7847356
    Abstract: Disclosed is a method to fabricate a semiconductor device, and a device fabricated in accordance with the method. The method includes providing a substrate comprised of silicon; performing a shallow trench isolation process to delineate nFET and pFET active areas and, within each active area, forming a gate structure over a surface of the substrate, the gate structure comprising in order from the surface of the substrate, a layer of high dielectric constant oxide, a layer comprised of a metal, a layer comprised of amorphous silicon, and a layer comprised of polycrystalline silicon. The layer comprised of amorphous silicon is provided to substantially prevent regrowth of the high dielectric constant oxide layer in a vertical direction during at least a deposition and processing of the polycrystalline silicon layer and/or metal layer.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Bruce B. Doris, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7807525
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators, metal containing gates, and threshold adjusting cap layers. The NFET gate stack and the PFET gate stack each has a portion which is identical in the NFET device and in the PFET device. This identical portion contains at least a gate metal layer and a cap layer. Due to the identical portion, device fabrication is simplified, requiring a reduced number of masks. Furthermore, as a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted with each other in direct physical contact. Device thresholds are further adjusted by oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: October 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7790592
    Abstract: Disclosed is a method to fabricate a semiconductor device, and a device fabricated in accordance with the method. The method includes providing a substrate comprised of silicon; performing a shallow trench isolation process to delineate nFET and pFET active areas and, within each active area, forming a gate structure over a surface of the substrate, the gate structure comprising in order from the surface of the substrate, a layer of high dielectric constant oxide, a layer comprised of a metal, a layer comprised of amorphous silicon, and a layer comprised of polycrystalline silicon. The layer comprised of amorphous silicon is provided to substantially prevent regrowth of the high dielectric constant oxide layer in a vertical direction during at least a deposition and processing of the polycrystalline silicon layer and/or metal layer.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Bruce B. Doris, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7785999
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Patent number: 7723798
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators, metal containing gates, and threshold adjusting cap layers. The NFET gate stack and the PFET gate stack each has a portion which is identical in the NFET device and in the PFET device. This identical portion contains at least a gate metal layer and a cap layer. Due to the identical portion, device fabrication is simplified, requiring a reduced number of masks. Furthermore, as a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted with each other in direct physical contact. Device thresholds are further adjusted by oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090302396
    Abstract: Disclosed is a method to fabricate a semiconductor device, and a device fabricated in accordance with the method. The method includes providing a substrate comprised of silicon; performing a shallow trench isolation process to delineate nFET and pFET active areas and, within each active area, forming a gate structure over a surface of the substrate, the gate structure comprising in order from the surface of the substrate, a layer of high dielectric constant oxide, a layer comprised of a metal, a layer comprised of amorphous silicon, and a layer comprised of polycrystalline silicon. The layer comprised of amorphous silicon is provided to substantially prevent regrowth of the high dielectric constant oxide layer in a vertical direction during at least a deposition and processing of the polycrystalline silicon layer and/or metal layer.
    Type: Application
    Filed: August 18, 2009
    Publication date: December 10, 2009
    Inventors: Tze-Chiang Chen, Bruce B. Doris, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090291553
    Abstract: A CMOS structure is disclosed in which a first type FET has an extremely thin oxide liner. This thin liner is capable of preventing oxygen from reaching the high-k dielectric gate insulator of the first type FET. A second type FET device of the CMOS structure has a thicker oxide liner. As a result, an oxygen exposure is capable to shift the threshold voltage of the second type of FET, without affecting the threshold value of the first type FET. The disclosure also teaches methods for producing the CMOS structure in which differing type of FET devices have differing thickness liners, and the threshold values of the differing type of FET devices is set independently from one another.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090283838
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090212369
    Abstract: CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 27, 2009
    Applicant: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Rashmi Jha, Siddarth A. Krishnan, Naim Moumen, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090108366
    Abstract: Disclosed is a method to fabricate a semiconductor device, and a device fabricated in accordance with the method. The method includes providing a substrate comprised of silicon; performing a shallow trench isolation process to delineate nFET and pFET active areas and, within each active area, forming a gate structure over a surface of the substrate, the gate structure comprising in order from the surface of the substrate, a layer of high dielectric constant oxide, a layer comprised of a metal, a layer comprised of amorphous silicon, and a layer comprised of polycrystalline silicon. The layer comprised of amorphous silicon is provided to substantially prevent regrowth of the high dielectric constant oxide layer in a vertical direction during at least a deposition and processing of the polycrystalline silicon layer and/or metal layer.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Tze-Chiang Chen, Bruce B. Doris, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090065817
    Abstract: The present invention relates to semiconductor devices, and more particularly to a process and structure for removing a dielectric spacer selective to a surface of a semiconductor substrate with substantially no removal of the semiconductor substrate. The method of the present invention can be integrated into a conventional CMOS processing scheme or into a conventional BiCMOS processing scheme. The method includes forming a field effect transistor on a semiconductor substrate, the FET comprising a dielectric spacer and the gate structure, the dielectric spacer located adjacent a sidewall of the gate structure and over a source/drain region in the semiconductor substrate; depositing a first nitride layer over the FET; and removing the nitride layer and the dielectric spacer selective to the semiconductor substrate with substantially no removal of the semiconductor substrate.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eduard A. Cartier, Rashmi Jha, Sivananda Kanakasabapathy, Xi Li, Renee T. Mo, Vijay Narayanan, Vamsi Paruchuri, Mark T. Robson, Kathryn T. Schonenberg, Michelle L. Steen, Richard Wise, Ying Zhang
  • Publication number: 20090039434
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators and metal containing gates. The metal layers of the gates in both the NFET and PFET devices have been fabricated from a single common metal layer. Due to the single common metal, device fabrication is simplified, requiring a reduced number of masks. Also, as a further consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted to each other in direct physical contact. Device thresholds are adjusted by the choice of the common metal material and oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090039435
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators, metal containing gates, and threshold adjusting cap layers. The NFET gate stack and the PFET gate stack each has a portion which is identical in the NFET device and in the PFET device. This identical portion contains at least a gate metal layer and a cap layer. Due to the identical portion, device fabrication is simplified, requiring a reduced number of masks. Furthermore, as a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted with each other in direct physical contact. Device thresholds are further adjusted by oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20090039436
    Abstract: A CMOS structure is disclosed in which both type of FET devices have gate insulators containing high-k dielectrics, and gates containing metals. The threshold of the two type of devices are adjusted in separate manners. One type of device has its threshold set by exposing the high-k dielectric to oxygen. During the oxygen exposure the other type of device is covered by a stressing dielectric layer, which layer also prevents oxygen penetration to its high-k gate dielectric. The high performance of the CMOS structure is further enhanced by adjusting the effective workfunctions of the gates to near band-edge values both NFET and PFET devices.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri, Mark Todhunter Robson, Michelle L. Steen, Ying Zhang
  • Publication number: 20080277726
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators and metal containing gates. The metal layers of the gates in both the NFET and PFET devices have been fabricated from a single common metal layer. As a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted to each other in direct physical contact. The FET device structures further contain stressed device channels, and gates with effective workfunctions of n+ Si and p+ Si values.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri, Mark Todhunter Robson, Michelle L. Steen, Ying Zhang
  • Publication number: 20080272437
    Abstract: A CMOS structure is disclosed in which a first type FET has an extremely thin oxide liner. This thin liner is capable of preventing oxygen from reaching the high-k dielectric gate insulator of the first type FET. A second type FET device of the CMOS structure has a thicker oxide liner. As a result, an oxygen exposure is capable to shift the threshold voltage of the second type of FET, without affecting the threshold value of the first type FET. The disclosure also teaches methods for producing the CMOS structure in which differing type of FET devices have differing thickness liners, and the threshold values of the differing type of FET devices is set independently from one another.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Vijay Narayanan, Vamsi Paruchuri