Patents by Inventor Vanni Poletto

Vanni Poletto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10444264
    Abstract: A device measures the current in an inductive load using two separate current-measuring paths to detect the current in the inductive load. The inductive load is connected between first and second nodes, and the first node connected to a first voltage. The device includes first and second transistors cascaded together between the first node and a third node that is connected to a second voltage. First and second sense amplifiers measure the current in the inductive load. The first and second sense amplifiers are connected to at least one terminal of the first and second transistors. Two blocks sample and hold signals from the first and second sense amplifiers, which represent, respectively, the currents in the two separate current-measuring paths. The two currents are subtracted in a comparison node for generating an error signal that is compared with a predefined window and if outside the window a failure signal is generated.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 15, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vanni Poletto, Riccardo Miglierina, Antonio Davide Leone, Sergio Lecce
  • Publication number: 20190305774
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 3, 2019
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Patent number: 10401408
    Abstract: A device to read a variable resistor has an analog to digital converter (ADC), a first switch and a second switch. The ADC has a first ADC input, a second ADC input and an ADC output. The first switch selectively couples a first voltage indicative of a voltage across a first resistance to the first ADC input. The second switch selectively couples a second voltage indicative of a voltage across a second resistance to the second ADC input. The ADC outputs a signal indicative of a value of the second resistance.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: September 3, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Vanni Poletto, Nicola Rogledi
  • Publication number: 20190267991
    Abstract: A circuit for controlling a first plurality of transistors connected in parallel and a second plurality of transistors connected in parallel, includes: a first plurality of stages, a respective one of the first plurality of stages being configured to supply a first control signal to a respective one of the first plurality of transistors; and a second plurality of stages, a respective one of the second plurality of stages being configured to supply a second control signal to a respective one of the second plurality of transistors. An output current of the respective one of the first plurality of stages is regulated based on a difference between a first value representative of a sum of output currents of each stage of the first plurality of stages and a second value representative of a sum of set points assigned to the first plurality of stages.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 29, 2019
    Inventors: Vanni Poletto, David F. Swanson, Giovanni Luca Torrisi, Laurent Chevalier
  • Patent number: 10374603
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: August 6, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Publication number: 20190162759
    Abstract: A device measures the current in an inductive load using two separate current-measuring paths to detect the current in the inductive load. The inductive load is connected between first and second nodes, and the first node connected to a first voltage. The device includes first and second transistors cascaded together between the first node and a third node that is connected to a second voltage. First and second sense amplifiers measure the current in the inductive load. The first and second sense amplifiers are connected to at least one terminal of the first and second transistors. Two blocks sample and hold signals from the first and second sense amplifiers, which represent, respectively, the currents in the two separate current-measuring paths. The two currents are subtracted in a comparison node for generating an error signal that is compared with a predefined window and if outside the window a failure signal is generated.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Vanni Poletto, Riccardo Miglierina, Antonio Davide Leone, Sergio Lecce
  • Patent number: 10215782
    Abstract: A device measures the current in an inductive load using two separate current-measuring paths to detect the current in the inductive load. The inductive load is connected between first and second nodes, and the first node connected to a first voltage. The device includes first and second transistors cascaded together between the first node and a third node that is connected to a second voltage. First and second sense amplifiers measure the current in the inductive load. The first and second sense amplifiers are connected to at least one terminal of the first and second transistors. Two blocks sample and hold signals from the first and second sense amplifiers, which represent, respectively, the currents in the two separate current-measuring paths. The two currents are subtracted in a comparison node for generating an error signal that is compared with a predefined window and if outside the window a failure signal is generated.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 26, 2019
    Assignee: STMicroelectronics S.R.L.
    Inventors: Vanni Poletto, Riccardo Miglierina, Antonio Davide Leone, Sergio Lecce
  • Publication number: 20180287597
    Abstract: A ringing peak detector circuit includes an input buffer receives a pair of differential feedback signals indicating a drain-source voltage of the at least one low side electronic switch. The input buffer generates shifted differential feedback signals having a common mode voltage that is equal to approximately one half of the supply voltage. A peak detector circuit is coupled to the input buffer to receive the shifted differential voltage signals. The peak detector circuit detects a peak value of an oscillation on the inductive electric load and to generate an output signal indicating the detected peak value. A circuit generates a control signal based on the detected peak value and a maximum value, with the control signal being applied to the inductive electrical load driver to control switching of the at least one low side switch.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventors: Vanni Poletto, Andrea Maino
  • Patent number: 10009018
    Abstract: A ringing peak detector module detects a ringing at the output of an inductive load driver including a bridge circuit containing high side and low side switches. A ringing peak detector receives differential feedback signals representative of the drain-source voltage of the low-side switch and detects a ringing peak of an oscillation of a current/voltage on the inductive load. A module compares said detected ringing peak with a maximum value and controls said driver by an error signal calculated as a function of the difference between said peak value and maximum value. The ringing peak detector module includes an input buffer module upstream of said peak detector circuit that shifts the differential feedback signals so a common mode of these signals is centered at a half-dynamic level of a supply voltage to provide correspondingly shifted voltages forming a shifted differential output corresponding to a steady state of the differential feedback signals.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: June 26, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vanni Poletto, Andrea Maino
  • Publication number: 20180175856
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Application
    Filed: February 19, 2018
    Publication date: June 21, 2018
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Publication number: 20180159518
    Abstract: A ringing peak detector module detects a ringing at the output of an inductive load driver including a bridge circuit containing high side and low side switches. A ringing peak detector receives differential feedback signals representative of the drain-source voltage of the low-side switch and detects a ringing peak of an oscillation of a current/voltage on the inductive load. A module compares said detected ringing peak with a maximum value and controls said driver by an error signal calculated as a function of the difference between said peak value and maximum value. The ringing peak detector module includes an input buffer module upstream of said peak detector circuit that shifts the differential feedback signals so a common mode of these signals is centered at a half-dynamic level of a supply voltage to provide correspondingly shifted voltages forming a shifted differential output corresponding to a steady state of the differential feedback signals.
    Type: Application
    Filed: June 27, 2017
    Publication date: June 7, 2018
    Inventors: Vanni Poletto, Andrea Maino
  • Publication number: 20180150093
    Abstract: A (pre) driver circuit includes first and second output terminals configured to be coupled to a power transistor. A differential stage has non-inverting and inverting inputs for receiving an input voltage. The input voltage is replicated as an output voltage across the first and second output terminals as a drive signal for the power transistor. The differential stage includes a differential transconductance amplifier in a voltage follower arrangement configured to provide continuous regulation of a voltage at the first output terminal with respect to the second output terminal.
    Type: Application
    Filed: June 29, 2017
    Publication date: May 31, 2018
    Inventors: Vanni Poletto, Biagio Provinzano
  • Patent number: 9929556
    Abstract: A fail-safe device may be coupled to a main device for actuating a switch responsive to a failure. The fail-safe device may include a fail-safe circuit, and an isolation trench surrounding the fail-safe circuit and isolating the fail-safe circuit from the main device. The fail-safe device may include an internal power supply connection, an internal reference voltage connection, a self-biased drive block configured to drive the at least one switch, and a receiver configured to receive failure signals from the main device.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 27, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vanni Poletto, Manuel Gaertner, Sergio Lecce, Giovanni Luca Torrisi
  • Patent number: 9929731
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Grant
    Filed: September 24, 2016
    Date of Patent: March 27, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Publication number: 20170322240
    Abstract: A device measures the current in an inductive load using two separate current-measuring paths to detect the current in the inductive load. The inductive load is connected between first and second nodes, and the first node connected to a first voltage. The device includes first and second transistors cascaded together between the first node and a third node that is connected to a second voltage. First and second sense amplifiers measure the current in the inductive load. The first and second sense amplifiers are connected to at least one terminal of the first and second transistors. Two blocks sample and hold signals from the first and second sense amplifiers, which represent, respectively, the currents in the two separate current-measuring paths. The two currents are subtracted in a comparison node for generating an error signal that is compared with a predefined window and if outside the window a failure signal is generated.
    Type: Application
    Filed: December 7, 2016
    Publication date: November 9, 2017
    Inventors: Vanni Poletto, Riccardo Miglierina, Antonio Davide Leone, Sergio Lecce
  • Publication number: 20170237427
    Abstract: In one embodiment, a (pre)driver circuit includes first and a second output terminal for driving an electronic switch that includes a control terminal and a current path through the switch. The arrangement can operate in one or more first driving configurations (e.g., for PMOS), with the first and second output terminals are coupled to the current path and the control electrode of the electronic switch, respectively, and one or more second driving configurations (e.g., for NMOS, both HS and LS), wherein the first and second output terminals of the driver circuit are coupled to the control electrode and the current path of the electronic switch, respectively.
    Type: Application
    Filed: September 24, 2016
    Publication date: August 17, 2017
    Inventors: Daniele Zella, Vanni Poletto, Mauro Foppiani
  • Publication number: 20170227586
    Abstract: A device to read a variable resistor has an analog to digital converter (ADC), a first switch and a second switch. The ADC has a first ADC input, a second ADC input and an ADC output. The first switch selectively couples a first voltage indicative of a voltage across a first resistance to the first ADC input. The second switch selectively couples a second voltage indicative of a voltage across a second resistance to the second ADC input. The ADC outputs a signal indicative of a value of the second resistance.
    Type: Application
    Filed: September 9, 2016
    Publication date: August 10, 2017
    Inventors: Vanni Poletto, Nicola Rogledi
  • Patent number: 9595947
    Abstract: A driver device is for switching on and off a transistor for supplying a load by driving a control electrode of the transistor. The driver device includes a first terminal connected to the control electrode of the transistor, a second terminal connected between the transistor and the load, and a current-discharge path coupled to the first terminal. The current-discharge path includes a diode and is activated when the transistor is switched off. The diode becomes non-conductive to interrupt the current-discharge path when the voltage on the second terminal reaches a threshold value.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 14, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vanni Poletto, Patrizia Milazzo, Sergio Lecce
  • Patent number: 9436193
    Abstract: A driver for an electric load includes a power device having a control terminal and an output terminal for an output current, and a control module. The control module is configured to drive the power device in an auto-recovery mode by switching between activation and deactivation in the occurrence of an overcurrent condition, wherein the output current reaches a threshold current. The control module is also configured to evaluate a first time interval between a time wherein the overcurrent condition occurs, and a first time, and generate a limit signal when the time interval is equal to a time threshold. The power device is driven in a switching-off condition at least as a function of the limit signal.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: September 6, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giovanni Luca Torrisi, Domenico Massimo Porto, Vanni Poletto
  • Publication number: 20160094210
    Abstract: A driver device is for switching on and off a transistor for supplying a load by driving a control electrode of the transistor. The driver device includes a first terminal connected to the control electrode of the transistor, a second terminal connected between the transistor and the load, and a current-discharge path coupled to the first terminal. The current-discharge path includes a diode and is activated when the transistor is switched off. The diode becomes non-conductive to interrupt the current-discharge path when the voltage on the second terminal reaches a threshold value.
    Type: Application
    Filed: July 13, 2015
    Publication date: March 31, 2016
    Inventors: Vanni POLETTO, Patrizia MILAZZO, Sergio LECCE