Patents by Inventor VARUN MISHRA

VARUN MISHRA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240355682
    Abstract: Embodiments of the present disclosure are based on extending a nanocomb transistor architecture to implement gate all around, meaning that a gate enclosure of at least a gate dielectric material, or both a gate dielectric material and a gate electrode material, is provided on all sides of each nanoribbon of a vertical stack of lateral nanoribbons of a nanocomb transistor arrangement. In particular, extension of a nanocomb transistor architecture to implement gate all around, proposed herein, involves use of two dielectric wall materials which are etch-selective with respect to one another, instead of using only a single dielectric wall material used to implement conventional nanocomb transistor arrangements. Nanocomb-based transistor arrangements implementing gate all around as described herein may provide improvements in terms of the short-channel effects of conventional nanocomb transistor arrangements.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Applicant: Intel Corporation
    Inventors: Varun Mishra, Stephen M. Cea, Cory E. Weber, Jack T. Kavalieros, Tahir Ghani
  • Publication number: 20240284652
    Abstract: Embodiments disclosed herein include transistor devices with depopulated channels. In an embodiment, the transistor device comprises a source region, a drain region, and a vertical stack of semiconductor channels between the source region and the drain region. In an embodiment, the vertical stack of semiconductor channels comprises first semiconductor channels, and a second semiconductor channel over the first semiconductor channels. In an embodiment, first concentrations of a dopant in the first semiconductor channels are less than a second concentration of the dopant in the second semiconductor channel.
    Type: Application
    Filed: April 24, 2024
    Publication date: August 22, 2024
    Inventors: Peng ZHENG, Varun MISHRA, Tahir GHANI
  • Patent number: 12068206
    Abstract: Embodiments of the present disclosure are based on extending a nanocomb transistor architecture to implement gate all around, meaning that a gate enclosure of at least a gate dielectric material, or both a gate dielectric material and a gate electrode material, is provided on all sides of each nanoribbon of a vertical stack of lateral nanoribbons of a nanocomb transistor arrangement. In particular, extension of a nanocomb transistor architecture to implement gate all around, proposed herein, involves use of two dielectric wall materials which are etch-selective with respect to one another, instead of using only a single dielectric wall material used to implement conventional nanocomb transistor arrangements. Nanocomb-based transistor arrangements implementing gate all around as described herein may provide improvements in terms of the short-channel effects of conventional nanocomb transistor arrangements.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Varun Mishra, Stephen M. Cea, Cory E. Weber, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 12029021
    Abstract: Embodiments disclosed herein include transistor devices with depopulated channels. In an embodiment, the transistor device comprises a source region, a drain region, and a vertical stack of semiconductor channels between the source region and the drain region. In an embodiment, the vertical stack of semiconductor channels comprises first semiconductor channels, and a second semiconductor channel over the first semiconductor channels. In an embodiment, first concentrations of a dopant in the first semiconductor channels are less than a second concentration of the dopant in the second semiconductor channel.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: July 2, 2024
    Assignee: Intel Corporation
    Inventors: Peng Zheng, Varun Mishra, Tahir Ghani
  • Publication number: 20240164080
    Abstract: Embodiments disclosed herein include forksheet transistor devices with depopulated channels. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to a first edge of the backbone. The first vertical stack of semiconductor channels includes first semiconductor channels and a second semiconductor channel over or beneath the first semiconductor channels. A concentration of a dopant in the first semiconductor channels is less than a concentration of the dopant in the second semiconductor channel. A second transistor device includes a second vertical stack of semiconductor channels adjacent to a second edge of the backbone opposite the first edge.
    Type: Application
    Filed: October 2, 2023
    Publication date: May 16, 2024
    Inventors: Peng ZHENG, Varun MISHRA, Harold W. KENNEL, Eric A. KARL, Tahir GHANI
  • Publication number: 20240153956
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 9, 2024
    Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
  • Publication number: 20240088254
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Aaron D. Lilak, Rishabh MEHANDRU, Cory WEBER, Willy RACHMADY, Varun MISHRA
  • Patent number: 11923370
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
  • Patent number: 11862702
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Cory Weber, Willy Rachmady, Varun Mishra
  • Publication number: 20230317786
    Abstract: Gate-all-around integrated circuit structures having necked features, and methods of fabricating gate-all-around integrated circuit structures having necked features, are described. In an example, an integrated circuit structure includes a vertical stack of horizontal nanowires. Each nanowire of the vertical stack of horizontal nanowires has a channel portion with a first vertical thickness and has end portions with a second vertical thickness greater than the first vertical thickness. A gate stack is surrounding the channel portion of each nanowire of the vertical stack of horizontal nanowires.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 5, 2023
    Inventors: Rishabh MEHANDRU, Cory WEBER, Varun MISHRA, Tahir GHANI, Pratik PATEL, Wonil CHUNG, Mohammad HASAN
  • Publication number: 20220245505
    Abstract: This application relates to apparatus and methods for training machine learning models. In some examples, a pool of worker pods are generated that can execute tasks to train a machine learning model. The pool of work pods are assigned tasks by a master that communicates with the worker pods using a work queue. Each worker pod can provide output using a results queue. The embodiments may operate with less reliable memory, such as object stores, which may be less costly than other types of storage mechanisms. To operate in less reliable environments, each worker pod can include a checkpoint mechanism that can recover from interruptions, such as interruptions due to node failure or preemption. For example, the checkpoint mechanism may allow a worker pod to continue processing a task, when the task is interrupted, from a last checkpoint. Processing results are provided to a results queue when a task completes.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Chepuri Shiri Krishna, Amit Agarwal, Ashish Gupta, Swarnim Narayan, Himanshu Rai, Varun Mishra, Abhinav Rai, Chandrakant Bharti, Gursirat Singh Sodhi, Nitin Raj Singh Namdev Balaji
  • Publication number: 20220246743
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Aaron D. LILAK, Rishabh MEHANDRU, Cory WEBER, Willy RACHMADY, Varun MISHRA
  • Publication number: 20220216221
    Abstract: Embodiments disclosed herein include transistor devices with depopulated channels. In an embodiment, the transistor device comprises a source region, a drain region, and a vertical stack of semiconductor channels between the source region and the drain region. In an embodiment, the vertical stack of semiconductor channels comprises first semiconductor channels, and a second semiconductor channel over the first semiconductor channels. In an embodiment, first concentrations of a dopant in the first semiconductor channels are less than a second concentration of the dopant in the second semiconductor channel.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Inventors: Peng ZHENG, Varun MISHRA, Tahir GHANI
  • Patent number: 11342432
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 24, 2022
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Cory Weber, Willy Rachmady, Varun Mishra
  • Patent number: 11315934
    Abstract: Embodiments disclosed herein include transistor devices with depopulated channels. In an embodiment, the transistor device comprises a source region, a drain region, and a vertical stack of semiconductor channels between the source region and the drain region. In an embodiment, the vertical stack of semiconductor channels comprises first semiconductor channels, and a second semiconductor channel over the first semiconductor channels. In an embodiment, first concentrations of a dopant in the first semiconductor channels are less than a second concentration of the dopant in the second semiconductor channel.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 26, 2022
    Assignee: Intel Corporation
    Inventors: Peng Zheng, Varun Mishra, Tahir Ghani
  • Publication number: 20220093647
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
  • Publication number: 20220093474
    Abstract: Embodiments of the present disclosure are based on extending a nanocomb transistor architecture to implement gate all around, meaning that a gate enclosure of at least a gate dielectric material, or both a gate dielectric material and a gate electrode material, is provided on all sides of each nanoribbon of a vertical stack of lateral nanoribbons of a nanocomb transistor arrangement. In particular, extension of a nanocomb transistor architecture to implement gate all around, proposed herein, involves use of two dielectric wall materials which are etch-selective with respect to one another, instead of using only a single dielectric wall material used to implement conventional nanocomb transistor arrangements. Nanocomb-based transistor arrangements implementing gate all around as described herein may provide improvements in terms of the short-channel effects of conventional nanocomb transistor arrangements.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Varun Mishra, Stephen M. Cea, Cory E. Weber, Jack T. Kavalieros, Tahir Ghani
  • Publication number: 20210408009
    Abstract: Embodiments disclosed herein include forksheet transistor devices with depopulated channels. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to a first edge of the backbone. The first vertical stack of semiconductor channels includes first semiconductor channels and a second semiconductor channel over or beneath the first semiconductor channels. A concentration of a dopant in the first semiconductor channels is less than a concentration of the dopant in the second semiconductor channel. A second transistor device includes a second vertical stack of semiconductor channels adjacent to a second edge of the backbone opposite the first edge.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Peng ZHENG, Varun MISHRA, Harold W. KENNEL, Eric A. KARL, Tahir GHANI
  • Publication number: 20210398977
    Abstract: Integrated circuitry comprising interconnect metallization on both front and back sides of a gate-all-around (GAA) transistor structure lacking at least one active bottom channel region. Bottom channel regions may be depopulated from a GAA transistor structure following removal of a back side substrate that exposes an inactive portion of a semiconductor fin. During back-side processing, one or more bottom channel region may be removed or rendered inactive through dopant implantation. Back-side processing may then proceed with the interconnection of one or more terminal of the GAA transistor structures through one or more levels of back-side interconnect metallization.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 23, 2021
    Applicant: Intel Corporation
    Inventors: Varun Mishra, Peng Zheng, Aaron Lilak, Tahir Ghani, Harold Kennel, Mauro Kobrinsky
  • Publication number: 20210305388
    Abstract: Gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, and methods of fabricating gate-all-around integrated circuit structures having an insulator fin on an insulator substrate, are described. For example, an integrated circuit structure includes an insulator fin on an insulator substrate. A vertical arrangement of horizontal semiconductor nanowires is over the insulator fin. A gate stack surrounds a channel region of the vertical arrangement of horizontal semiconductor nanowires, and the gate stack is overlying the insulator fin. A pair of epitaxial source or drain structures is at first and second ends of the vertical arrangement of horizontal semiconductor nanowires and at first and second ends of the insulator fin.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: Aaron D. LILAK, Rishabh MEHANDRU, Cory WEBER, Willy RACHMADY, Varun MISHRA