Patents by Inventor Vei-Han Chan

Vei-Han Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090134910
    Abstract: Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
    Type: Application
    Filed: January 7, 2009
    Publication date: May 28, 2009
    Inventors: Colin Neal Murphy, Narbeh Derhacobian, Louis Charles Kordus, II, Antonietta Oliva, Vei-Han Chan, Thomas E. Stewart, JR.
  • Patent number: 7511532
    Abstract: Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: March 31, 2009
    Assignee: Cswitch Corp.
    Inventors: Narbeh Derharcobian, Louis Charles Kordus, II, Colin Neal Murphy, Antonietta Oliva, Vei-Han Chan, Thomas Stewart, Jr.
  • Patent number: 7494849
    Abstract: Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 24, 2009
    Assignee: Cswitch Inc.
    Inventors: Antonietta Oliva, Louis Charles Kordus, II, Narbeh Derharcobian, Vei-Han Chan, Thomas E. Stewart, Jr.
  • Publication number: 20080206922
    Abstract: Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device.
    Type: Application
    Filed: May 7, 2008
    Publication date: August 28, 2008
    Inventors: Antonietta Oliva, Louis Charles Kordus, Narbeh Derhacobian, Vei-Han Chan, Thomas E. Stewart
  • Publication number: 20080025080
    Abstract: Methods and apparatus for programming a phase change device (PCD) to a low resistance state. According to an exemplary method, one or more first programming pulses having a predetermined magnitude and/or duration are applied to a PCD. After each programming pulse is applied, the programmed resistance of the PCD is compared to a target resistance specification. If the programmed resistance is not in accordance with the target resistance specification, one or more second programming pulses having a magnitude and/or duration different than the magnitude and/or duration of the one or more first programming pulses are applied to the PCD. This process is repeated until the programmed resistance of the PCD satisfies the target resistance specification or it is determined that the PCD cannot be programmed to a resistance value that satisfies the target resistance specification.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Inventors: Vei-Han Chan, Louis Kordus, Narbeh Derhacobian, Jason Golbus
  • Publication number: 20070235707
    Abstract: Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 11, 2007
    Inventors: Louis Kordus, Antonietta Oliva, Narbeh Derhacobian, Vei-Han Chan
  • Publication number: 20070188187
    Abstract: Impedance matching and trimming apparatuses and methods using programmable resistance devices. According to one exemplary embodiment, the impedance matching circuit includes a programmable resistance element, a comparator, a resistor divider having a common node coupled to a first input of the comparator, and an impedance element control circuit coupled between an output of the comparator and the programmable resistance element. The programmable resistance element includes one or more programmable resistance devices (PRDs). Programmed resistances of the programmable resistance element combine with the resistance of an external reference resistor to provide an impedance matched termination. A change in the resistance of the termination impedance causes a change in the output of the comparator.
    Type: Application
    Filed: November 2, 2006
    Publication date: August 16, 2007
    Inventors: Antonietta Oliva, Louis Kordus, Vei-Han Chan
  • Publication number: 20070165446
    Abstract: Apparatus and methods for reducing single-event upsets (SEUs) in latch-based circuitry (e.g., static random access memory (SRAM) cells) and other digital circuitry. According to an exemplary embodiment, a latch-based circuit includes a radiation-hardened latch having first and second cross-coupled inverters and first and second programmable resistance devices (PRDs). The first PRD is coupled between the output of the first inverter and the input of the second inverter. The second PRD is coupled between the output of the second inverter and the input of the first inverter. The PRDs may be programmed to low or high-resistance states. When SET to a low-resistance state, the latch of the latch-based circuitry may be accessed to read the current logic state stored by the latch or to write a new logic state into the latch. When RESET to a high-resistance state, the latch is in a radiation-hard state, thereby preventing the latch from generating SEUs.
    Type: Application
    Filed: November 2, 2006
    Publication date: July 19, 2007
    Inventors: Antonietta Oliva, Vei-Han Chan
  • Publication number: 20070146012
    Abstract: Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
    Type: Application
    Filed: November 3, 2005
    Publication date: June 28, 2007
    Inventors: Colin Murphy, Narbeh Derhacobian, Louis Kordus, Antonietta Oliva, Vei-Han Chan, Thomas Stewart
  • Publication number: 20070099405
    Abstract: Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device.
    Type: Application
    Filed: November 3, 2005
    Publication date: May 3, 2007
    Inventors: Antonietta Oliva, Louis Kordus, Narbeh Derhacobian, Vei-Han Chan, Thomas Stewart
  • Publication number: 20070096071
    Abstract: Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device.
    Type: Application
    Filed: November 3, 2005
    Publication date: May 3, 2007
    Inventors: Louis Kordus, Antonietta Oliva, Narbeh Derhacobian, Vei-Han Chan
  • Patent number: 7122415
    Abstract: Aluminum oxide is deposited by atomic layer deposition to form a high-k dielectric for the interpoly dielectric layer of a non-volatile memory device. The increased capacitive coupling can allow a thicker oxide layer to be used between the floating gate and the control gate, resulting in improved reliability and longer lifetime of the memory cells fabricated according to this invention.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: October 17, 2006
    Assignee: ProMOS Technologies, Inc.
    Inventors: Chuck Jang, Zhong Dong, Vei-Han Chan, Ching-Hwa Chen
  • Patent number: 7057231
    Abstract: A floating gate (110) of a nonvolatile memory cell is formed in a trench (114) in a semiconductor substrate (220). A dielectric (128) covers the surface of the trench. The wordline (140) has a portion overlying the trench. The cell's floating gate transistor has a first source/drain region (226), a channel region (224), and a second source/drain region (130). The dielectric (128) is stronger against leakage near at least a portion of the first source/drain region (122) than near at least a portion of the channel region. The stronger portion (128.1) of the additional dielectric improves data retention without increasing the programming and erase times if the programming and erase operations do not rely on a current through the stronger portion. Additional dielectric (210) has a portion located below the top surface of the substrate between the trench and a top part of the second source/drain region (130). The second source/drain region has a part located below the additional dielectric and meeting the trench.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 6, 2006
    Assignee: ProMOS Technologies, Inc.
    Inventors: Yi Ding, Vei-Han Chan
  • Patent number: 7005338
    Abstract: A floating gate (110) of a nonvolatile memory cell is formed in a trench (114) in a semiconductor substrate (220). A dielectric (128) covers the surface of the trench. The wordline (140) has a portion overlying the trench. The cell's floating gate transistor has a first source/drain region (226), a channel region (224), and a second source/drain region (130). The dielectric (128) is stronger against leakage near at least a portion of the first source/drain region (122) than near at least a portion of the channel region. The stronger portion (128.1) of the additional dielectric improves data retention without increasing the programming and erase times if the programming and erase operations do not rely on a current through the stronger portion. Additional dielectric (210) has a portion located below the top surface of the substrate between the trench and a top part of the second source/drain region (130). The second source/drain region has a part located below the additional dielectric and meeting the trench.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: February 28, 2006
    Assignee: ProMOS Technologies Inc.
    Inventors: Yi Ding, Vei-Han Chan
  • Patent number: 6989319
    Abstract: Methods and arrangements are provided for significantly reducing electron trapping in semiconductor devices having a polysilicon feature and an overlying dielectric layer. The methods and arrangements employ a nitrogen-rich region within the polysilicon feature near the interface to the overlying dielectric layer. The methods include selectively implanting nitrogen ions through at least a portion of the overlying dielectric layer and into the polysilicon feature to form an initial nitrogen concentration profile within the polysilicon feature. Next, the temperature within the polysilicon feature is raised to an adequately high temperature, for example using rapid thermal anneal (RTA) techniques, which cause the initial nitrogen concentration profile to change due to the migration of the majority of the nitrogen towards either the interface with the overlying dielectric layer or the interface with an underlying layer.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: January 24, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark Ramsbey, Sameer Haddad, Vei-Han Chan, Yu Sun, Chi Chang
  • Publication number: 20060008997
    Abstract: Aluminum oxide is deposited by atomic layer deposition to form a high-k dielectric for the interpoly dielectric layer of a non-volatile memory device. The increased capacitive coupling can allow a thicker oxide layer to be used between the floating gate and the control gate, resulting in improved reliability and longer lifetime of the memory cells fabricated according to this invention.
    Type: Application
    Filed: August 4, 2005
    Publication date: January 12, 2006
    Inventors: Chuck Jang, Zhong Dong, Vei-Han Chan, Ching-Hwa Chen
  • Patent number: 6962848
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: November 8, 2005
    Assignee: ProMOS Technologies Inc.
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Publication number: 20050227437
    Abstract: Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g.
    Type: Application
    Filed: April 7, 2004
    Publication date: October 13, 2005
    Inventors: Zhong Dong, Chuck Jang, Ching-Hwa Chen, Chunchieh Huang, Jin-Ho Kim, Vei-Han Chan, Chung Leung, Chia-Shun Hsiao, George Kovall, Steven Yang
  • Patent number: 6891221
    Abstract: In this invention a process for a flash memory cell and an architecture for using the flash memory cell is disclosed to provide a nonvolatile memory having a high storage density. Adjacent columns of cells share the same source and the source line connecting these sources runs vertically in the memory layout, connecting to the sources of adjacent columns memory cells. Bit lines connect to drains of cells in adjacent columns and are laid out vertically, alternating with source lines in an every other column scheme. Wordlines made of a second layer of polysilicon form control gates of the flash memory cells and are continuous over the full width of a memory partition. Programming is done in a vertical page using hot electrons to inject charge onto the floating gates. the cells are erased using Fowler-Nordheim tunneling of electrons from the floating gate to the control gate by way of inter polysilicon oxide formed on the walls of the floating gates.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: May 10, 2005
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter W. Lee, Hung-Sheng Chen, Vei-Han Chan
  • Patent number: 6821847
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 23, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan