Patents by Inventor Venkata Sharat Chandra PARIMI

Venkata Sharat Chandra PARIMI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200373132
    Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.
    Type: Application
    Filed: March 10, 2020
    Publication date: November 26, 2020
    Inventors: Viren KALSEKAR, Vinay K. PRABHAKAR, Venkata Sharat Chandra PARIMI
  • Publication number: 20200328063
    Abstract: One or more embodiments described herein generally relate to methods for chucking and de-chucking a substrate to/from an electrostatic chuck used in a semiconductor processing system. Generally, in embodiments described herein, the method includes: (1) applying a first voltage from a direct current (DC) power source to an electrode disposed within a pedestal; (2) introducing process gases into a process chamber; (3) applying power from a radio frequency (RF) power source to a showerhead; (4) performing a process on the substrate; (5) stopping application of the RF power; (6) removing the process gases from the process chamber; and (7) stopping applying the DC power.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 15, 2020
    Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE
  • Publication number: 20200249263
    Abstract: Embodiments described herein relate to methods and tools for monitoring electrostatic chucking performance. A performance test is performed that requires only one bowed substrate and one reference substrate. To run the test, the reference substrate is positioned on an electrostatic chuck in a process chamber and the bowed substrate is positioned on the reference substrate. A voltage is applied from a power source to the electrostatic chuck, generating an electrostatic chucking force to secure the bowed substrate to the reference substrate. Thereafter, the applied voltage is decreased incrementally until the electrostatic chucking force is too weak to maintain the bowed substrate in flat form, resulting in dechucking of the bowed wafer. By monitoring the impedance of the chamber during deposition using a sensor, the dechucking threshold voltage can be identified at the point where the impedance of the reference substrate and the impedance of the bowed substrate deviates.
    Type: Application
    Filed: January 21, 2020
    Publication date: August 6, 2020
    Inventors: Lu XU, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Byung Seok KWON, Venkata Sharat Chandra PARIMI, Kwangduk Douglas LEE, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20200234932
    Abstract: Embodiments of the present disclosure generally relate to a pedestal for increasing temperature uniformity in a substrate supported thereon. The pedestal comprises a body having a heater embedded therein. The body comprises a patterned surface that includes a first region having a first plurality of posts extending from a base surface of the body at a first height, and a second region surrounding the central region having a second plurality of posts extending from the base surface at a second height that is greater than the first height, wherein an upper surface of each of the first plurality of posts and the second plurality of posts are substantially coplanar and define a substrate receiving surface.
    Type: Application
    Filed: December 4, 2019
    Publication date: July 23, 2020
    Inventors: Venkata Sharat Chandra PARIMI, Zubin HUANG, Jian LI, Satish RADHAKRISHNAN, Rui CHENG, Diwakar N. KEDLAYA, Juan Carlos ROCHA-ALVAREZ, Umesh M. KELKAR, Karthik JANAKIRAMAN, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR, Byung Seok KWON
  • Publication number: 20200224310
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 16, 2020
    Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR, Kwangduk Douglas LEE, Sungwon HA, Jian LI
  • Publication number: 20200176296
    Abstract: Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.
    Type: Application
    Filed: November 7, 2019
    Publication date: June 4, 2020
    Inventors: Abdul Aziz KHAJA, Venkata Sharat Chandra PARIMI, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR
  • Publication number: 20190382889
    Abstract: Implementations of the present disclosure generally provide improved methods for cleaning a vacuum chamber to remove adsorbed contaminants therefrom prior to a chamber seasoning process while maintaining the chamber at desired deposition processing temperatures. The contaminants may be formed from the reaction of cleaning gases with the chamber components and the walls of the vacuum chamber.
    Type: Application
    Filed: May 24, 2019
    Publication date: December 19, 2019
    Inventors: Venkata Sharat Chandra PARIMI, Zhijun JIANG, Ganesh BALASUBRAMANIAN, Vivek Bharat SHAH, Shailendra SRIVASTAVA, Amit Kumar BANSAL, Xinhai HAN, Vinay K. PRABHAKAR
  • Publication number: 20190341227
    Abstract: One or more embodiments described herein generally relate to selective deposition of substrates in semiconductor processes. In these embodiments, a precursor is delivered to a process region of a process chamber. A plasma is generated by delivering RF power to an electrode within a substrate support surface of a substrate support disposed in the process region of the process chamber. In embodiments described herein, delivering the RF power at a high power range, such as greater than 4.5 kW, advantageously leads to greater plasma coupling to the electrode, resulting in selective deposition to the substrate, eliminating deposition on other process chamber areas such as the process chamber side walls. As such, less process chamber cleans are necessary, leading to less time between depositions, increasing throughput and making the process more cost-effective.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 7, 2019
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Sarah Michelle BOBEK, Abdul Aziz KHAJA, Vinay K. PRABHAKAR, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE