Patents by Inventor Venkatachalam C. Jaiprakash

Venkatachalam C. Jaiprakash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8357559
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 22, 2013
    Assignee: Nantero Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 8310015
    Abstract: Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: November 13, 2012
    Assignee: Nantero Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 8125039
    Abstract: One-time programmable, non-volatile field effect devices and methods of making same. Under one embodiment, a one-time-programmable, non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate has a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically coupled to one of the source, drain and gate and has an electromechanically-deflectable nanotube element that is positioned to be deflectable in response to electrical stimulation to form a non-volatile closed electrical state between the one of the source, drain and gate and its corresponding terminal.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: February 28, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7928523
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 19, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7911831
    Abstract: Under one aspect, non-volatile transistor device includes a source and drain with a channel in between; a gate structure made of a semiconductive or conductive material disposed over an insulator over the channel; a control gate made of a semiconductive or conductive material; and an electromechanically-deflectable nanotube switching element in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 22, 2011
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Publication number: 20100283528
    Abstract: Under one aspect, non-volatile transistor device includes a source and drain with a channel in between; a gate structure made of a semiconductive or conductive material disposed over an insulator over the channel; a control gate made of a semiconductive or conductive material; and an electromechanically-deflectable nanotube switching element in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 11, 2010
    Applicant: NANTERO, INC.
    Inventors: Thomas RUECKES, Brent M. SEGAL, Bernard VOGELI, Darren K. BROCK, Venkatachalam C. JAIPRAKASH, Claude L. BERTIN
  • Patent number: 7786540
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: August 31, 2010
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7780918
    Abstract: Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7719067
    Abstract: Electro-mechanical switches and memory cells using vertically-oriented nanofabric articles and methods of making the same. Under one aspect, a nanotube device includes a substantially horizontal substrate having a vertically oriented feature; and a nanotube film substantially conforming to a horizontal feature of the substrate and also to at least the vertically oriented feature. Under another aspect, an electromechanical device includes a structure having a major horizontal surface and a channel formed therein, the channel having first and second wall electrodes defining at least a portion of first and second vertical walls of the channel; first and second nanotube articles vertically suspended in the channel and in spaced relation to a corresponding first and second wall electrode, and electromechanically deflectable in a horizontal direction toward or away from the corresponding first and second wall electrode in response to electrical stimulation.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 18, 2010
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Publication number: 20100025659
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 4, 2010
    Applicant: Nantero, Inc.
    Inventors: CLAUDE L. BERTIN, THOMAS RUECKES, BRENT M. SEGAL, BERNHARD VOGELI, DARREN K. BROCK, VENKATACHALAM C. JAIPRAKASH
  • Publication number: 20100022045
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Application
    Filed: May 20, 2009
    Publication date: January 28, 2010
    Applicant: Nantero, Inc.
    Inventors: BRENT M. SEGAL, THOMAS RUECKES, BERNHARD VOGELI, DARREN K. BROCK, VENKATACHALAM C. JAIPRAKASH, CLAUDE L. BERTIN
  • Publication number: 20100012927
    Abstract: Electro-mechanical switches and memory cells using vertically-oriented nanofabric articles and methods of making the same. Under one aspect, a nanotube device includes a substantially horizontal substrate having a vertically oriented feature; and a nanotube film substantially conforming to a horizontal feature of the substrate and also to at least the vertically oriented feature. Under another aspect, an electromechanical device includes a structure having a major horizontal surface and a channel formed therein, the channel having first and second wall electrodes defining at least a portion of first and second vertical walls of the channel; first and second nanotube articles vertically suspended in the channel and in spaced relation to a corresponding first and second wall electrode, and electromechanically deflectable in a horizontal direction toward or away from the corresponding first and second wall electrode in response to electrical stimulation.
    Type: Application
    Filed: September 25, 2006
    Publication date: January 21, 2010
    Applicant: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7619291
    Abstract: New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electro-mechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: November 17, 2009
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7569880
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: August 4, 2009
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7538400
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: May 26, 2009
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Publication number: 20090045473
    Abstract: New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electro-mechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap.
    Type: Application
    Filed: December 4, 2007
    Publication date: February 19, 2009
    Applicant: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Publication number: 20080164541
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Application
    Filed: July 11, 2007
    Publication date: July 10, 2008
    Applicant: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7385266
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 10, 2008
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7304357
    Abstract: New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electro-mechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 4, 2007
    Assignee: NANTERO, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7294877
    Abstract: Nanotube on gate FET structures and applications of such, including n2 crossbars requiring only 2n control lines. A non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and a channel region of a second semiconductor type of material disposed between the source and drain region. A gate structure is made of at least one of semiconductive or conductive material and is disposed over an insulator over the channel region. A control gate is made of at least one of semiconductive or conductive material. An electromechanically-deflectable nanotube switching element is in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: November 13, 2007
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin