Patents by Inventor Venkatachalam C. Jaiprakash

Venkatachalam C. Jaiprakash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7274078
    Abstract: Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 25, 2007
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7268044
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: September 11, 2007
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7259410
    Abstract: New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electromechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: August 21, 2007
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7161218
    Abstract: One-time programmable, non-volatile field effect devices and methods of making same. Under one embodiment, a one-time-programmable, non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate has a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically coupled to one of the source, drain and gate and has an electromechanically-deflectable nanotube element that is positioned to be deflectable in response to electrical stimulation to form a non-volatile closed electrical state between the one of the source, drain and gate and its corresponding terminal.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: January 9, 2007
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7115901
    Abstract: Non-volatile field effect devices and circuits using same. A non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate have a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal. The others of the source, drain and gate are directly connected to their corresponding terminals. The nanotube switching element is electromechanically-deflectable in response to electrical stimulation at two control terminals to create one of a non-volatile open and non-volatile closed electrical communication state between the one of the source, drain and gate and its corresponding terminal. Under one embodiment, one of the two control terminals has a dielectric surface for contact with the nanotube switching element when creating a non-volatile open state.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: October 3, 2006
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash
  • Patent number: 7112464
    Abstract: Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 26, 2006
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7113426
    Abstract: Non-Volatile RAM Cell and Array using Nanotube Switch Position for Information State. A non-volatile memory array includes a plurality of memory cells, each cell receiving a bit line, word line, and release line. Each memory cell includes a cell selection transistor with first, second and third nodes. The first and second nodes are in respective electrical communication with the bit line and the word line. Each cell further includes an electromechanically deflectable switch, having a first, second and third node. The first node is in electrical communication with the release line, and a third node is in electrical communication with the third node of the cell selection transistor. The electromechanically deflectable switch includes a nanotube switching element physically positioned between the first and third nodes of the switch and in electrical communication with the second node of the switch. The second node of the switch is in communication with a reference signal.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: September 26, 2006
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernard Vogeli, Darren Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7075141
    Abstract: A four terminal non-volatile transistor device. A non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and each in electrical communication with a respective terminal. A channel region of a second semiconductor type of material is disposed between the source and drain region. A floating gate structure is made of at least one of semiconductive or conductive material and is disposed over the channel region. A control gate is made of at least one of semiconductive or conductive material and is in electrical communication with a respective terminal. An electromechanically-deflectable nanotube switching element is in electrical communication with one of the floating gate structure and the control gate structure, and is positioned to be electromechanically deflectable into contact with the other of the floating gate structure and the control gate structure.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 11, 2006
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7045421
    Abstract: A method is used to make a bit selectable device having nanotube memory elements. A structure having at least two transistors is provided, each with a drain and a source with a defined channel region therebetween, each transistor further including a gate over said channel. A trench is formed between one of the source and drain of a first transistor and one of the source and drain of a second transistor. An electrical communication path is formed in the trench between one of the source and drain of a first transistor and one of the source and drain of a second transistor. A defined pattern of nanotube fabric is provided over at least a horizontal portion of the structure and extending into the trench. An electrode is provided in the trench.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: May 16, 2006
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7034352
    Abstract: The methods and structures of the present invention involve providing a vertical dynamic random access memory (DRAM) cell device comprising a buried strap which can be laterally constrained, thereby maintaining freedom from cross talk, even at 6F2 scaling, in the absence of adjacent Shallow Trench Isolation (STI). The methods and structures of the present invention involve the further recognition that the STI can therefore be vertically confined, freed of any need to extend down below the level of the buried strap. The reduction of the buried strap to 1F width and the concomitant reduction in the depth of the STI together permit a significantly reduced aspect ratio, permitting critically improved manufacturability.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: April 25, 2006
    Assignee: Infineon Technologies AG
    Inventors: Mihel Seitz, Venkatachalam C. Jaiprakash
  • Patent number: 7015092
    Abstract: Methods and devices that provide improved isolation and alignment of gate conductors or gate contacts of vertical transistors in deep trench memory cells. A method for forming a vertical gate contact of a vertical transistor includes an oxide spacer formation process that prevents defects, such as shorts caused by voids filled with polysilicon, resulting from etching processes that are performed during fabrication of a vertical transistor, and enables formation of well-defined contact plugs for gate contacts, providing improved alignment structures.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 21, 2006
    Assignee: Infineon Technologies North America Corp.
    Inventors: Venkatachalam C. Jaiprakash, Norbert Arnold
  • Patent number: 7015145
    Abstract: A method for fabricating a buried strap forms a dielectric collar along sidewalls of a trench. The trench is formed in a substrate. The trench is filled with a conductive material and the conductive material is recessed in the trench to expose a portion of the collar. A masking layer is deposited in the trench over the exposed portion of the collar. A portion of the masking layer is removed over one side of the collar and a portion of the collar is etched on the one side. A buried strap is formed on the conductive material, which connects to the substrate on the one side.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: March 21, 2006
    Assignee: Infineon Technologies AG
    Inventors: Venkatachalam C. Jaiprakash, Norbert Arnold
  • Patent number: 6995046
    Abstract: A method of making byte erasable devices having elements made with nanotubes. Under one aspect of the invention, a device is made having nanotube memory elements. A structure is provided having a plurality of transistors, each with a drain and a source with a defined channel region therebetween, each transistor further including a gate over said channel. For a predefined set of transistors, a corresponding trench is formed between gates of adjacent transistors. For each trench, a defined pattern of nanotube fabric is provided over at least a horizontal portion of the structure and extending into the trench. An electrode is provided in each trench. Each defined pattern of nanotube fabric is suspended so that at least a portion is vertically suspended in spaced relation to the vertical walls of the trench and positioned so that the vertically suspended defined pattern of nanotube fabric is electromechanically deflectable into electrical communication with one of the drain and source of a transistor.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: February 7, 2006
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 6960818
    Abstract: A method for reducing hot carrier reliability problems within an integrated circuit device. The method includes forming a shallow trench isolation structure incorporated with the device by filling a trench with a photoresist plug and removing a portion of the photoresist plug to a level below the depth of a channel also incorporated with the device. A nitride liner disposed within the trench under the photoresist plug is then recessed to a level substantially equal to the level of the photoresist material, which is then removed. The method further includes the deposition of oxide fill within the trench, thereby encapsulating the recessed nitride liner.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: November 1, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rajesh Rengarajan, Venkatachalam C. Jaiprakash
  • Patent number: 6944054
    Abstract: A non-volatile memory array includes a plurality of memory cells, each cell receiving a bit line, word line, and release line. Each memory cell includes a cell selection transistor and a restore transistor with first, second and third nodes. Each cell further includes an electromechanically deflectable switch, the position of which manifests the logical state of the cell. Each cell is bit selectable for read and write operations.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: September 13, 2005
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 6924538
    Abstract: Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: August 2, 2005
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 6884676
    Abstract: A memory cell is formed in a memory cell array comprised of a plurality of memory cells arranged in rows and columns. A deep trench structure is formed within a semiconductor substrate and includes at least one conducting region. A patterned bit line structure is formed atop of, and electrically isolated from, the insulating region of the deep trench structure and atop of, but contacting at least part of, regions of the semiconductor substrate. Exposed portions of the semiconductor substrate are etched to form at least one isolation trench adjoining the deep trench structure using the patterned bit line structure as an etch mask. The isolation trench is filled with a dielectric material. A contact region to the conducting region of the deep trench structure is formed within the dielectric material of the isolation trench and is electrically isolated from the bit line structure.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: April 26, 2005
    Assignee: Infineon Technologies AG
    Inventors: Norbert Arnold, Venkatachalam C. Jaiprakash
  • Patent number: 6849496
    Abstract: A semiconductor Dynamic Random Access Memory (DRAM) cell is fabricated using a vertical access transistor and a storage capacitor formed in a vertical trench. A Shallow Trench Isolation (STI) region is used as a masking region to confine the channel region of the access transistor, the first and second output regions of the access transistor, and a strap region connecting the second output region to the storage capacitor, to a narrow portion of the trench. The so confined second output region of the access transistor has reduced leakage to similar second output regions of adjacent memory cells. Adjacent memory cells can then be placed closer to one another without an increase in leakage and cross-talk between adjacent memory cells.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: February 1, 2005
    Assignee: Infineon Technologies AG
    Inventors: Venkatachalam C. Jaiprakash, Mihel Seitz, Norbert Arnold
  • Publication number: 20040238868
    Abstract: A memory cell is formed in a memory cell array comprised of a plurality of memory cells arranged in rows and columns. A deep trench structure is formed within a semiconductor substrate and includes at least one conducting region. A patterned bit line structure is formed atop of, and electrically isolated from, the insulating region of the deep trench structure and atop of, but contacting at least part of, regions of the semiconductor substrate. Exposed portions of the semiconductor substrate are etched to form at least one isolation trench adjoining the deep trench structure using the patterned bit line structure as an etch mask. The isolation trench is filled with a dielectric material. A contact region to the conducting region of the deep trench structure is formed within the dielectric material of the isolation trench and is electrically isolated from the bit line structure.
    Type: Application
    Filed: May 28, 2003
    Publication date: December 2, 2004
    Applicant: Infineon Technologies North America Corp.
    Inventors: Norbert Arnold, Venkatachalam C. Jaiprakash
  • Patent number: 6809368
    Abstract: A structure and method which enables the deposit of a thin nitride liner just before Trench Top Oxide TTO (High Density Plasma) HDP deposition during the formation of a vertical MOSFET DRAM cell device. This liner is subsequently removed after TTO sidewall etch. One function of this liner is to protect the collar oxide from being etched during the TTO oxide sidewall etch and generally provides lateral etch protection which is not realized in the current processing scheme. The process sequence does not rely on previously deposited films for collar protection, and decouples TTO sidewall etch protection from previous processing steps to provide additional process flexibility, such as allowing a thinner strap Cut Mask nitride and greater nitride etching during node nitride removal and buried strap nitrided interface removal.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: October 26, 2004
    Assignee: International Business Machines Corporation
    Inventors: Rama Divakaruni, Thomas W. Dyer, Rajeev Malik, Jack A. Mandelman, Venkatachalam C. Jaiprakash