Patents by Inventor Venkataramanan Krishnaswamy
Venkataramanan Krishnaswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230363647Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.Type: ApplicationFiled: July 18, 2023Publication date: November 16, 2023Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
-
Patent number: 11813482Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).Type: GrantFiled: January 24, 2022Date of Patent: November 14, 2023Assignee: DoseOptics LLCInventors: Venkataramanan Krishnaswamy, Brian W. Pogue
-
Publication number: 20230350086Abstract: A Cherenkov imaging system includes a high-speed radiation detector configured to provide a first timing signal synchronized with pulses of radiation to control operation of at least one pulse-gated, multiple-pulse-integrating, (PG-MPI) CMOS camera synchronized through the digital time signal to pulses of the radiation beam source, to image Cherenkov radiation; and a digital image-processing system. The high-speed radiation detector is either a solid-state radiation detector or a scintillator with a photodetector. The system images Cherenkov light emitted by tissue by using a timing signal synchronized to pulses of a pulsed radiation beam to control the PG-MPI camera by integrating light received by the PG-MPI camera during multiple pulses of the radiation beam while excluding light received by the camera between pulses of the radiation beam.Type: ApplicationFiled: January 29, 2021Publication date: November 2, 2023Inventors: Petr BRUZA, Brian POGUE, Venkataramanan KRISHNASWAMY
-
Patent number: 11751767Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.Type: GrantFiled: November 4, 2019Date of Patent: September 12, 2023Assignee: The Trustees of Dartmouth CollegeInventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
-
Patent number: 11633627Abstract: A Cherenkov-based or thin-sheet scintillator-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light or scintillator-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov light or scintillator light imaging.Type: GrantFiled: May 6, 2021Date of Patent: April 25, 2023Assignees: THE TRUSTEES OF DARTMOUTH COLLEGE, DOSEOPTICS, LLCInventors: Venkataramanan Krishnaswamy, Petr Bruza, Jr., Michael Jermyn, Brian W. Pogue, David Gladstone, Lesley A. Jarvis, Irwin Tendler
-
Publication number: 20230020195Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.Type: ApplicationFiled: September 20, 2022Publication date: January 19, 2023Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
-
Publication number: 20220370154Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: ApplicationFiled: July 25, 2022Publication date: November 24, 2022Inventors: Venkataramanan KRISHNASWAMY, Richard J. BARTH, Jr., Keith D. PAULSEN
-
Publication number: 20220280815Abstract: A system for performing radiation treatment of a patient with a proton beam from a particle accelerator uses a high-sensitivity camera to capture dose images of patient surface, a video processor that integrates the dose images, beam-on detection apparatus, and apparatus to eliminate interference of room lighting. In embodiments, the system registers dose images to a surface model of the patient derived from stereo image pairs captured by a stereo camera. In embodiments, the surface model is registered to three-dimensional images of the patient from MRI or CT, and an integrated three-dimensional energy deposition map of the patient is prepared.Type: ApplicationFiled: July 10, 2020Publication date: September 8, 2022Inventors: Petr BRUZA, Brian POGUE, Michael JERMYN, Venkataramanan KRISHNASWAMY
-
Patent number: 11395704Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: GrantFiled: April 27, 2020Date of Patent: July 26, 2022Assignee: THE TRUSTEES OF DARTMOUTH COLLEGEInventors: Venkataramanan Krishnaswamy, Richard J. Barth, Jr., Keith D. Paulsen
-
Publication number: 20220143427Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).Type: ApplicationFiled: January 24, 2022Publication date: May 12, 2022Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue
-
Patent number: 11298205Abstract: The present disclosure includes customized guidance devices in the form of guidance templates configured to fit over a given area of a patient's body and provide guidance during a tissue treatment or tissue removal procedure of that given area, which may include administration of an agent to a target tissue, target tissue biopsy, target tissue resection, or target tissue ablation. The customized guidance templates are generally constructed via an additive manufacturing process (i.e., three-dimensional (3D) printing) or subtractive manufacturing process (i.e., milling) based on a fabrication instruction file, which may include imaging data of the given area of the patient's body in which targeted tissue treatment is to be performed. The fabrication instruction file may further include additional data, such as the type of procedure to be performed (i.e., biopsy of the tissue abnormality, destruction or resection of the tissue abnormality, etc.).Type: GrantFiled: December 19, 2019Date of Patent: April 12, 2022Assignee: CairnSurgical, Inc.Inventors: Venkataramanan Krishnaswamy, Robert F. Rioux, David Danielsen, George Bourne
-
Patent number: 11235177Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).Type: GrantFiled: October 23, 2017Date of Patent: February 1, 2022Assignee: DoseOptics LLCInventors: Venkataramanan Krishnaswamy, Brian W. Pogue
-
Publication number: 20210275833Abstract: A Cherenkov-based or thin-sheet scintillator-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light or scintillator-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov light or scintillator light imaging.Type: ApplicationFiled: May 6, 2021Publication date: September 9, 2021Inventors: Venkataramanan Krishnaswamy, Petr Bruza, JR., Michael Jermyn, Brian W. Pogue, David Gladstone, Lesley A. Jarvis, Irwin Tendler
-
Patent number: 11000703Abstract: A Cherenkov-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov radiation detection.Type: GrantFiled: July 18, 2020Date of Patent: May 11, 2021Assignees: THE TRUSTEES OF DARTMOUTH COLLEGE, DOSEOPTICS, LLCInventors: Venkataramanan Krishnaswamy, Petr Bruza, Michael Jermyn, Brian W. Pogue
-
Patent number: 10973589Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: GrantFiled: April 27, 2020Date of Patent: April 13, 2021Assignee: THE TRUSTEES OF DARTMOUTH COLLEGEInventors: Venkataramanan Krishnaswamy, Richard J. Barth, Jr., Keith D. Paulsen
-
Publication number: 20200346041Abstract: A Cherenkov-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov radiation detection.Type: ApplicationFiled: July 18, 2020Publication date: November 5, 2020Inventors: Venkataramanan Krishnaswamy, Petr Bruza, Michael Jermyn, Brian W. Pogue
-
Publication number: 20200330163Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: ApplicationFiled: April 27, 2020Publication date: October 22, 2020Inventors: Venkataramanan KRISHNASWAMY, Richard J. BARTH, JR., Keith D. PAULSEN
-
Publication number: 20200261164Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: ApplicationFiled: April 27, 2020Publication date: August 20, 2020Inventors: Venkataramanan KRISHNASWAMY, Richard J. BARTH, JR., Keith D. PAULSEN
-
Patent number: 10667870Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.Type: GrantFiled: June 10, 2016Date of Patent: June 2, 2020Assignee: THE TRUSTEES OF DARTMOUTH COLLEGEInventors: Venkataramanan Krishnaswamy, Richard J. Barth, Jr., Keith D. Paulsen
-
Publication number: 20200138541Abstract: The present disclosure includes customized guidance devices in the form of guidance templates configured to fit over a given area of a patient's body and provide guidance during a tissue treatment or tissue removal procedure of that given area, which may include administration of an agent to a target tissue, target tissue biopsy, target tissue resection, or target tissue ablation. The customized guidance templates are generally constructed via an additive manufacturing process (i.e., three-dimensional (3D) printing) or subtractive manufacturing process (i.e., milling) based on a fabrication instruction file, which may include imaging data of the given area of the patient's body in which targeted tissue treatment is to be performed. The fabrication instruction file may further include additional data, such as the type of procedure to be performed (i.e., biopsy of the tissue abnormality, destruction or resection of the tissue abnormality, etc.).Type: ApplicationFiled: December 19, 2019Publication date: May 7, 2020Inventors: Venkataramanan Krishnaswamy, Robert F. Rioux, David Danielsen, George Bourne