Patents by Inventor VENKATESH VASUDEVAN

VENKATESH VASUDEVAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11880955
    Abstract: A map generator can be programmed to generate a multi-parameter graphical map by encoding at least two different physiological parameters for a geometric surface, corresponding to tissue of a patient, using different color components of a multi-dimensional color model such that each of the different physiological parameters is encoded by at least one of the different color components.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: January 23, 2024
    Assignee: CARDIOINSIGHT TECHNOLOGIES INC.
    Inventors: Qingguo Zeng, Charulatha Ramanathan, Venkatesh Vasudevan, Rémi Dubois, Ping Jia
  • Patent number: 11324433
    Abstract: A method can include storing input electrical signal data representing at least a given electrophysiological signal acquired from a patient. A non-local mean filter can be applied to the given electrophysiological signal, the non-local mean filter including a spatial filter component and an intensity filter component. The method can also include controlling parameters to establish weighting of each of the spatial filter component and the intensity filter component in response to a control input. Filtered signal data can be stored based on the applying and the controlling.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 10, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Venkatesh Vasudevan, Charulatha Ramanathan, Ping Jia
  • Publication number: 20200093444
    Abstract: A map generator can be programmed to generate a multi-parameter graphical map by encoding at least two different physiological parameters for a geometric surface, corresponding to tissue of a patient, using different color components of a multi-dimensional color model such that each of the different physiological parameters is encoded by at least one of the different color components.
    Type: Application
    Filed: October 21, 2019
    Publication date: March 26, 2020
    Inventors: QINGGUO ZENG, CHARULATHA RAMANATHAN, VENKATESH VASUDEVAN, RÉMI DUBOIS, PING JIA
  • Patent number: 10482680
    Abstract: A map generator can be programmed to generate a multi-parameter graphical map by encoding at least two different physiological parameters for a geometric surface, corresponding to tissue of a patient, using different color components of a multi-dimensional color model such that each of the different physiological parameters is encoded by at least one of the different color components.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: November 19, 2019
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Charulatha Ramanathan, Venkatesh Vasudevan, Remi Dubois, Ping Jia
  • Patent number: 10194982
    Abstract: A non-transitory computer-readable medium can have instructions executable by a processor. The instructions can include an electrogram reconstruction method to generate reconstructed electrogram signals for each of a multitude of points residing on or near a predetermined cardiac envelope based on geometry data and non-invasively measured body surface electrical signals. The instructions can include a phase calculator to compute phase signals for the multitude of points based on the reconstructed electrogram signals and a visualization engine to generate an output based on the computed phase signals.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 5, 2019
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Rémi Dubois, Brian P. George, Charulatha Ramanathan, Qingguo Zeng, Maria Strom, Venkatesh Vasudevan, Ryan Bokan, Ping Jia
  • Patent number: 10117594
    Abstract: Systems and methods are provided to detect and analyze arrhythmia drivers. In one example, a system can include a wave front analyzer programmed to compute wave front lines extending over a surface for each of the plurality of time samples based on phase information computed from electrical data at nodes distributed across the surface. A trajectory detector can be programmed to compute wave break points for each of the wave front lines and to determine a trajectory of at least one rotor core across the surface. A stability detector can be programmed to identify at least one stable rotor portion corresponding to subtrajectories of the determined trajectory.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 6, 2018
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qingguo Zeng, Ping Jia, Ryan Bokan, Brian P. George, Charulatha Ramanathan, Venkatesh Vasudevan, Maria Strom
  • Publication number: 20180242873
    Abstract: A method can include storing input electrical signal data representing at least a given electrophysiological signal acquired from a patient. A non-local mean filter can be applied to the given electrophysiological signal, the non-local mean filter including a spatial filter component and an intensity filter component. The method can also include controlling parameters to establish weighting of each of the spatial filter component and the intensity filter component in response to a control input. Filtered signal data can be stored based on the applying and the controlling.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: QINGGUO ZENG, VENKATESH VASUDEVAN, CHARULATHA RAMANATHAN, PING JIA
  • Patent number: 10039464
    Abstract: A method to calculate and visualize dynamic wave front propagation of electrical signals on a geometric surface is described. Wave front locations are identified on the geometric surface between each identified pair of adjacent nodes on the geometric surface. A graphical map can be generated to represent the identified wave front locations on at least a portion of the geometric surface.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: August 7, 2018
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Remi Dubois, Qingguo Zeng, Ping Jia, Venkatesh Vasudevan, Charulatha Ramanathan
  • Patent number: 9977060
    Abstract: A computer-implemented method can include determining an amplitude for each of a plurality of input channels, corresponding to respective nodes. A measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. The method can also include comparing an amplitude for each node relative to other nodes to determine temporary bad channels. For each of the temporary bad channels, a measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. Channel integrity can then be identified based on the computed measures of similarity.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: May 22, 2018
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Brian P. George, Charulatha Ramanathan, Ping Jia, Qingguo Zeng, Venkatesh Vasudevan, Maria Strom, Ryan Bokan, Rémi Dubois
  • Patent number: 9974458
    Abstract: A method can include storing input electrical signal data representing at least a given electrophysiological signal acquired from a patient. A non-local mean filter can be applied to the given electrophysiological signal, the non-local mean filter including a spatial filter component and an intensity filter component. The method can also include controlling parameters to establish weighting of each of the spatial filter component and the intensity filter component in response to a control input. Filtered signal data can be stored based on the applying and the controlling.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 22, 2018
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Venkatesh Vasudevan, Charulatha Ramanathan, Ping Jia
  • Patent number: 9883813
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 6, 2018
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Rémi DuBois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Patent number: 9737267
    Abstract: A method can include storing a plurality of data sets including values computed for each of a plurality of points for a given spatial region of tissue, the values in each of the data sets characterizing electrical information for each respective point of the plurality of points for a different time interval. The method can also include combining the values computed for each of a plurality of points in a first interval, corresponding to a first map, with the values for computed for each of the respective plurality of points in another interval and to normalize the combined values relative to a common scale. The method can also include generating a composite map for the given spatial region based on the combined values that are normalized.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 22, 2017
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Maria Strom, Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Brian P. George
  • Patent number: 9730835
    Abstract: A vitrectomy surgical system includes a vitrectomy probe having a cutting portion comprising an inner tube, an outer tube, and an aspiration port. The inner tube may be movable relative to the outer tube to cut vitreous fibers. The system also includes a controller associated with the vitrectomy probe and configured to control movement of the inner tube by generating control signals corresponding to a cutting scheme including a plurality of series of cuts with each cut being evenly spaced in time, the plurality of series of cuts separated by a recovery period.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 15, 2017
    Assignee: Novartis AG
    Inventors: Brian William McDonell, Venkatesh Vasudevan
  • Patent number: 9668664
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 6, 2017
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Publication number: 20170003332
    Abstract: A computer-implemented method can include determining an amplitude for each of a plurality of input channels, corresponding to respective nodes. A measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. The method can also include comparing an amplitude for each node relative to other nodes to determine temporary bad channels. For each of the temporary bad channels, a measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. Channel integrity can then be identified based on the computed measures of similarity.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Inventors: BRIAN P. GEORGE, CHARULATHA RAMANATHAN, PING JIA, QINGGUO ZENG, VENKATESH VASUDEVAN, MARIA STROM, RYAN BOKAN, RÉMI DUBOIS
  • Publication number: 20160354004
    Abstract: Systems and methods are provided to detect and analyze arrhythmia drivers. In one example, a system can include a wave front analyzer programmed to compute wave front lines extending over a surface for each of the plurality of time samples based on phase information computed from electrical data at nodes distributed across the surface. A trajectory detector can be programmed to compute wave break points for each of the wave front lines and to determine a trajectory of at least one rotor core across the surface. A stability detector can be programmed to identify at least one stable rotor portion corresponding to subtrajectories of the determined trajectory.
    Type: Application
    Filed: August 18, 2016
    Publication date: December 8, 2016
    Inventors: QINGGUO ZENG, PING JIA, RYAN BOKAN, BRIAN P. GEORGE, CHARULATHA RAMANATHAN, VENKATESH VASUDEVAN, MARIA STROM
  • Publication number: 20160354002
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Application
    Filed: August 18, 2016
    Publication date: December 8, 2016
    Inventors: QINGGUO ZENG, RÉMI DUBOIS, PING JIA, RYAN BOKAN, VENKATESH VASUDEVAN, CHARULATHA RAMANATHAN, MARIA STROM, BRIAN P. GEORGE
  • Publication number: 20160338772
    Abstract: A non-transitory computer-readable medium can have instructions executable by a processor. The instructions can include an electrogram reconstruction method to generate reconstructed electrogram signals for each of a multitude of points residing on or near a predetermined cardiac envelope based on geometry data and non-invasively measured body surface electrical signals. The instructions can include a phase calculator to compute phase signals for the multitude of points based on the reconstructed electrogram signals and a visualization engine to generate an output based on the computed phase signals.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: RÉMI DUBOIS, BRIAN P. GEORGE, CHARULATHA RAMANATHAN, QINGGUO ZENG, MARIA STROM, VENKATESH VASUDEVAN, RYAN BOKAN, PING JIA
  • Patent number: 9470728
    Abstract: A computer-implemented method can include determining an amplitude for each of a plurality of input channels, corresponding to respective nodes. A measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. The method can also include comparing an amplitude for each node relative to other nodes to determine temporary bad channels. For each of the temporary bad channels, a measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. Channel integrity can then be identified based on the computed measures of similarity.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: October 18, 2016
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Brian P. George, Charulatha Ramanathan, Ping Jia, Qingguo Zeng, Venkatesh Vasudevan, Maria Strom, Ryan Bokan, Remi Dubois
  • Patent number: 9433364
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 6, 2016
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George