Patents by Inventor Victor Moroz

Victor Moroz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130334613
    Abstract: A finFET block architecture uses end-to-end finFET blocks. A first set of semiconductor fins having a first conductivity type and a second set of semiconductor fins having a second conductivity type can be aligned end-to-end. An inter-block isolation structure separates the semiconductor fins in the first and second sets. The ends of the fins in the first set are proximal to a first side of the inter-block isolation structure and ends of the fins in the second set are proximal to a second side of the inter-block isolation structure. A patterned gate conductor layer includes a first gate conductor extending across at least one fin in the first set of semiconductor fins, and a second gate conductor extending across at least one fin in the second set of semiconductor fins. The first and second gate conductors are connected by an inter-block conductor.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: SYNOPSYS, INC.
    Inventor: VICTOR MOROZ
  • Patent number: 8609550
    Abstract: A structure, such as an integrated circuit device, is described that includes a line of material with critical dimensions which vary within a distribution substantially less than that of a mask element, such as a patterned resist element, used in etching the line. Techniques are described for processing a line of crystalline phase material which has already been etched using the mask element, in a manner which straightens an etched sidewall surface of the line. The straightened sidewall surface does not carry the sidewall surface variations introduced by photolithographic processes, or other patterning processes, involved in forming the mask element and etching the line.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 17, 2013
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Lars Bomholt
  • Patent number: 8595661
    Abstract: A finFET block architecture suitable for use of a standard cell library, is based on an arrangement including a first set of semiconductor fins in a first region of the substrate having a first conductivity type, and a second set of semiconductor fins in a second region of the substrate, the second region having a second conductivity type. A patterned gate conductor layer including gate traces in the first and second regions, arranged over channel regions of the first and second sets of semiconductor fins is used for transistor gates. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and can include a plurality of floating power buses over the fins in the first and second regions.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 26, 2013
    Assignee: Synopsys, Inc.
    Inventors: Jamil Kawa, Victor Moroz, Deepak Sherlekar
  • Patent number: 8560995
    Abstract: Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: October 15, 2013
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Dipankar Pramanik
  • Patent number: 8561003
    Abstract: A finFET block architecture includes a first set of semiconductor fins having a first conductivity type, and a second set of semiconductor fins having a second conductivity type. An inter-block insulator is placed between outer fins of the first and second sets. A patterned gate conductor layer includes a first plurality of gate traces extending across the set of fins in the first block without crossing the inter-block insulator, and a second plurality of gate traces extending across the set of fins in the second block without crossing the inter-block insulator. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and include an inter-block connector arranged to connect gate traces in the first and second blocks.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: October 15, 2013
    Assignee: Synopsys, Inc.
    Inventors: Jamil Kawa, Victor Moroz, Deepak Sherlekar
  • Publication number: 20130132914
    Abstract: Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Inventors: James David Sproch, Victor Moroz, Xiaopeng Xu, Aditya Pradeep Karmarkar
  • Publication number: 20130125075
    Abstract: An automated method for estimating layout-induced variations in threshold voltage in an integrated circuit layout. The method begins with the steps of selecting a diffusion area within the layout for analysis. Then, the system identifies Si/STI edges on the selected area as well as channel areas and their associated gate/Si edges. Next, the threshold voltage variations in each identified channel area are identified, which requires further steps of calculating threshold voltage variations due to effects in a longitudinal direction; calculating threshold voltage variations due to effects in a transverse direction; and combining the longitudinal and transverse variations to provide an overall variation. Finally, a total variation is determined by combining variations from individual channel variations.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Applicant: Synopsys, Inc.
    Inventors: VICTOR MOROZ, DIPANKAR PRAMANIK
  • Publication number: 20130113547
    Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.
    Type: Application
    Filed: December 22, 2011
    Publication date: May 9, 2013
    Applicant: Synopsys. Inc.
    Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
  • Patent number: 8413096
    Abstract: Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 2, 2013
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Dipankar Pramanik
  • Patent number: 8407634
    Abstract: Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: March 26, 2013
    Assignee: Synopsys Inc.
    Inventors: Victor Moroz, Dipankar Pramanik
  • Publication number: 20130065380
    Abstract: A structure, such as an integrated circuit device, is described that includes a line of material with critical dimensions which vary within a distribution substantially less than that of a mask element, such as a patterned resist element, used in etching the line. Techniques are described for processing a line of crystalline phase material which has already been etched using the mask element, in a manner which straightens an etched sidewall surface of the line. The straightened sidewall surface does not carry the sidewall surface variations introduced by photolithographic processes, or other patterning processes, involved in forming the mask element and etching the line.
    Type: Application
    Filed: January 13, 2012
    Publication date: March 14, 2013
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, Lars Bomholt
  • Publication number: 20130026607
    Abstract: A structure such as an integrated circuit device is described having a line of material with critical dimensions which vary within a distribution substantially less than that of a mask element, such as a patterned resist element, used in manufacturing the line of material.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, Lars Bomholt
  • Publication number: 20130026571
    Abstract: A finFET block architecture includes a first set of semiconductor fins having a first conductivity type, and a second set of semiconductor fins having a second conductivity type. An inter-block insulator is placed between outer fins of the first and second sets. A patterned gate conductor layer includes a first plurality of gate traces extending across the set of fins in the first block without crossing the inter-block insulator, and a second plurality of gate traces extending across the set of fins in the second block without crossing the inter-block insulator. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and include an inter-block connector arranged to connect gate traces in the first and second blocks.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: Synopsys, Inc.
    Inventors: JAMIL KAWA, VICTOR MOROZ, DEEPAK SHERLEKAR
  • Publication number: 20130026572
    Abstract: A finFET block architecture suitable for use of a standard cell library, is based on an arrangement including a first set of semiconductor fins in a first region of the substrate having a first conductivity type, and a second set of semiconductor fins in a second region of the substrate, the second region having a second conductivity type. A patterned gate conductor layer including gate traces in the first and second regions, arranged over channel regions of the first and second sets of semiconductor fins is used for transistor gates. Patterned conductor layers over the gate conductor layer are arranged in orthogonal layout patterns, and can include a plurality of floating power buses over the fins in the first and second regions.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: Synopsy, Inc.
    Inventors: JAMIL KAWA, Victor Moroz, Deepak Sherlekar
  • Publication number: 20130026575
    Abstract: Roughly described, an integrated circuit device has formed on a substrate a plurality of transistors including a first subset of at least one transistor and a second subset of at least one transistor, wherein all of the transistors in the first subset have one underlap distance and all of the transistors in the second subset have a different underlap distance. The transistors in the first and second subsets preferably have different threshold voltages, and preferably realize different points on the high performance/low power tradeoff.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: SYNOPSYS, INC.
    Inventors: Victor Moroz, James D. Sproch
  • Patent number: 8362622
    Abstract: Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: January 29, 2013
    Assignee: Synopsys, Inc.
    Inventors: James David Sproch, Victor Moroz, Xiaopeng Xu, Aditya Pradeep Karmarkar
  • Patent number: 8354736
    Abstract: Roughly described, an integrated circuit device includes a substrate including a via passing therethrough, a strained electrically conductive first material in the via, the first material tending to introduce first stresses into the substrate, and a strained second material in the via, the second material tending to introduce second stresses into the substrate which at least partially cancel the first stresses. In an embodiment, SiGe is grown epitaxially on the inside sidewall of the via in the silicon wafer. SiO2 is then formed on the inside surface of the SiGe, and metal is formed down the center. The stresses introduce by the SiGe tend to counteract the stresses introduced by the metal, thereby reducing or eliminating undesirable stress in the silicon and permitting the placement of transistors in close proximity to the TSV.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 15, 2013
    Assignee: Synopsys, Inc.
    Inventor: Victor Moroz
  • Patent number: 8349668
    Abstract: Different approaches for FinFET performance enhancement based on surface/channel direction and type of strained capping layer are provided. In one relatively simple and inexpensive approach providing a performance boost, a single surface/channel direction orientation and a single strained capping layer can be used for both n-channel FinFETs (nFinFETs) and p-channel FinFETs (pFinFETs). In another approach including more process steps (thereby increasing manufacturing cost) but providing a significantly higher performance boost, different surface/channel direction orientations and different strained capping layers can be used for nFinFETs and pFinFETs.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 8, 2013
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Tsu-Jae King Liu
  • Patent number: 8347252
    Abstract: An automated method for estimating layout-induced variations in threshold voltage in an integrated circuit layout. The method begins with the steps of selecting a diffusion area within the layout for analysis. Then, the system identifies Si/STI edges on the selected area as well as channel areas and their associated gate/Si edges. Next, the threshold voltage variations in each identified channel area are identified, which requires further steps of calculating threshold voltage variations due to effects in a longitudinal direction; calculating threshold voltage variations due to effects in a transverse direction; and combining the longitudinal and transverse variations to provide an overall variation. Finally, a total variation is determined by combining variations from individual channel variations.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: January 1, 2013
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Dipankar Pramanik
  • Publication number: 20120280354
    Abstract: An integrated circuit device having a plurality of lines is described in which the widths of the lines, and the spacing between adjacent lines, vary within a small range which is independent of variations due to photolithographic processes, or other patterning processes, involved in manufacturing the device. A sequential sidewall spacer formation process is described for forming an etch mask for the lines, which results in first and second sets of sidewall spacers arranged in an alternating fashion. As a result of this sequential sidewall spacer process, the variation in the widths of the lines across the plurality of lines, and the spacing between adjacent lines, depends on the variations in the dimensions of the sidewall spacers. These variations are independent of, and can be controlled over a distribution much less than, the variation in the size of the intermediate mask element caused by the patterning process.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: SYNOPSYS, INC.
    Inventors: VICTOR MOROZ, XI-WEI LIN