Patents by Inventor Victor Velculescu

Victor Velculescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190106752
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: September 17, 2018
    Publication date: April 11, 2019
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20190055610
    Abstract: Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis.
    Type: Application
    Filed: November 2, 2018
    Publication date: February 21, 2019
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Victor Velculescu, Luis Diaz, Nickolas Papadopoulos, Yuchen Jiao, Ralph Hruban
  • Publication number: 20180346987
    Abstract: Recent large-scale analyses have demonstrated that the genomic landscape of human cancer is complex and variable among individuals of the same tumor type. Such underlying genetic differences may in part be responsible for the varying therapeutic responses observed in cancer patients. To examine the effect of somatic genetic changes in colorectal cancer on sensitivity to a common targeted therapy, we performed complete exome sequence and copy number analyses of 129 tumors that were KRAS wild-type and analyzed their response to anti-EGFR antibody blockade in patient-derived tumorgraft models. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 6, 2018
    Inventors: Victor VELCULESCU, Eniko PAPP, Vilmos ADLEFF, Andrea BERTOTTI, Livio TRUSOLINO
  • Patent number: 10144971
    Abstract: Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: December 4, 2018
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W Kinzler, Victor Velculescu, Luis Diaz, Nikolas Papadopoulos, Yuchen Jiao, Ralph Hruban
  • Publication number: 20180327863
    Abstract: Two genes, ARID1A (AT-rich interactive domain-containing protein 1A) and PPP2R1A (protein-phosphatase 2, regulatory subunit 1, alpha), can be used in methods which are useful for detecting cancer, diagnosing cancer, contributing to a diagnosis of cancer, confirming a diagnosis of cancer, identifying appropriate treatments for cancer, monitoring treatment of cancer, and evaluating treatment protocols for cancer, including ovarian clear cell carcinoma, breast cancer, colon cancer, gastric cancer, lung cancer, medulloblastoma, pancreatic cancer, and prostate cancer.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 15, 2018
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Victor Velculescu, Nickolas Papadopoulos, Sian Jones
  • Publication number: 20180282821
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in gliblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 4, 2018
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Publication number: 20180230550
    Abstract: Clinical management of human cancer is dependent on the accurate monitoring of residual and recurrent tumors. We have developed a method, called personalized analysis of rearranged ends (PARE), which can identify translocations in solid tumors. Analysis of four colorectal and two breast cancers revealed an average of nine rearranged sequences (range 4 to 15) per tumor. Polymerase chain reaction with primers spanning the breakpoints were able to detect mutant DNA molecules present at levels lower than 0.001% and readily identified mutated circulating DNA in patient plasma samples. This approach provides an exquisitely sensitive and broadly applicable approach for the development of personalized biomarkers to enhance the clinical management of cancer patients.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Bert Volgelstein, Kenneth W. Kinzler, Victor Velculescu, Luis Diaz, Rebecca J. Leary
  • Publication number: 20180155770
    Abstract: Pancreatic adenocarcinoma has the worst overall mortality of any solid tumor, with only 7% of patients surviving after 5 years. To evaluate the clinical implications of genomic alterations in this low cellularity tumor type, we deeply sequenced the genomes of 101 enriched pancreatic adenocarcinomas from patients who underwent potentially curative resections and used non-invasive approaches to examine tumor specific mutations in the circulation of these patients. These analyses revealed somatic mutations in chromatin regulating genes including MLL and ARID1A in 20% of patients that were associated with improved survival. Liquid biopsy analyses of cell free plasma DNA revealed that 43% of patients with localized disease had detectable circulating tumor DNA (ctDNA) in their blood at the time of diagnosis. Detection of ctDNA after resection predicted clinical relapse and poor outcome, and disease recurrence by ctDNA was detected 6.5 months earlier than with standard CT imaging.
    Type: Application
    Filed: February 18, 2016
    Publication date: June 7, 2018
    Inventors: Victor Velculescu, Mark Sausen, Vilmos Adleff, Jillian Phallen
  • Patent number: 9982304
    Abstract: Two genes, ARID1A (AT-rich interactive domain-containing protein 1A) and PPP2R1A (protein-phosphatase 2, regulatory subunit 1, alpha), can be used in methods which are useful for detecting cancer, diagnosing cancer, contributing to a diagnosis of cancer, confirming a diagnosis of cancer, identifying appropriate treatments for cancer, monitoring treatment of cancer, and evaluating treatment protocols for cancer, including ovarian clear cell carcinoma, breast cancer, colon cancer, gastric cancer, lung cancer, medulloblastoma, pancreatic cancer, and prostate cancer.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: May 29, 2018
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Victor Velculescu, Nickolas Papadopoulos, Sian Jones
  • Publication number: 20180135044
    Abstract: The present disclosure involves ctDNA assays that interrogate many regions from a single sample with high precision and accuracy, while evaluating multiple forms of cancer-related genomic alterations including sequence mutations and structural alterations. The disclosure provides simplified yet robust methods that achieve high sensitivity and specificity by analyzing cancer genes using a limited pool of non-unique barcodes in combination with endogenous barcodes. Samples are captured and sequenced using high coverage next-generation sequencing to allow tumor-specific somatic mutations, amplifications, and translocations to be identified.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Mark Sausen, Victor Velculescu, Luis Diaz
  • Publication number: 20180119231
    Abstract: Phosphatidylinositol 3-kinases (PI3Ks) are known to be important regulators of signaling pathways. To determine whether PI3Ks are genetically altered in cancers, we analyzed the sequences of the PI3K gene family and discovered that one family member, PIK3CA, is frequently mutated in cancers of the colon and other organs. The majority of mutations clustered near two positions within the PI3K helical or kinase domains. PIK3CA represents one of the most highly mutated oncogenes yet identified in human cancers and is useful as a diagnostic and therapeutic target.
    Type: Application
    Filed: December 8, 2017
    Publication date: May 3, 2018
    Inventors: Yardena Samuels, Victor Velculescu, Kenneth Kinzler, Bert Vogelstein
  • Publication number: 20180119230
    Abstract: Increased sensitivity and specificity of characterizing patient-specific variations as mutations that are indicative of a cancer or other disease by identifying patient-specific tumor mutations by comparing tumor and normal sequence reads from the patient and filtering for mutations that are unique to the tumor. By comparing tumor sequence to a normal sequence from the same patient, false-positive mutation calls are minimized in the analysis.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 3, 2018
    Inventors: Victor Velculescu, Luis Diaz, Siân Jones, Samuel Vincent Angiuoli
  • Patent number: 9957572
    Abstract: Clinical management of human cancer is dependent on the accurate monitoring of residual and recurrent tumors. We have developed a method, called personalized analysis of rearranged ends (PARE), which can identify translocations in solid tumors. Analysis of four colorectal and two breast cancers revealed an average of nine rearranged sequences (range 4 to 15) per tumor. Polymerase chain reaction with primers spanning the breakpoints were able to detect mutant DNA molecules present at levels lower than 0.001% and readily identified mutated circulating DNA in patient plasma samples. This approach provides an exquisitely sensitive and broadly applicable approach for the development of personalized biomarkers to enhance the clinical management of cancer patients.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: May 1, 2018
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Victor Velculescu, Luis Diaz, Rebecca J. Leary
  • Patent number: 9926606
    Abstract: Protein kinases are important signaling molecules involved in tumorigenesis. Mutational analysis of the human tyrosine kinase gene family (98 genes) identified somatic alterations in ˜20% of colorectal cancers, with the majority of mutations occurring in NTRK3, FES, GUCY2F and a previously uncharacterized tyrosine kinase gene called MCCK/MLK4. Most alterations were in conserved residues affecting key regions of the kinase domain. These data represent a paradigm for the unbiased analysis of signal transducing genes in cancer and provide useful targets for therapeutic intervention.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 27, 2018
    Assignee: The Johns Hopkins University
    Inventors: Alberto Bardelli, D. Williams Parsons, Victor Velculescu, Kenneth W. Kinzler, Bert Vogelstein
  • Publication number: 20170327898
    Abstract: The evolutionary origin of high-grade serous ovarian carcinoma remains largely unknown. The vast majority of tumor-specific genomic alterations from ovarian cancers are present in fallopian tube STIC lesions (average of 55 sequence alterations per tumor), including those affecting TP53, BRCA1, BRCA2 or PTEN genes. A quantitative evolutionary analysis indicated that tumors of the fallopian tube were the likely precursors of ovarian cancer and could directly give rise to metastatic lesions. These analyses suggest that there may be less than two years between the development of a STIC and the initiation of fallopian tube tumors, ovarian tumors or other metastases. Thus there may be a short window between the development of a STIC and the initiation of ovarian tumors or other metastases, highlighting the importance of the prevention, early detection and therapeutic intervention of this disease.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 16, 2017
    Inventors: Victor Velculescu, Eniko Papp, Vilmos Adleff
  • Patent number: 9695479
    Abstract: Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high density microarrays and sequenced all known protein-coding genes and miRNA genes using Sanger sequencing. We found that, on average, each tumor had 11 gene alterations, markedly fewer than in common adult cancers. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone H3K4 trimethylase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: July 4, 2017
    Assignees: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth Kinzler, Nickolas Papadopoulos, Donald Williams Parsons, Rebecca J. Leary, Meng Li, Xiaosong Zhang, Sian Jones, Gregory J. Riggins, Victor Velculescu, Darell Bigner, Hai Yan
  • Patent number: 9637779
    Abstract: Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the Plus- or Minus-strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was non-random across the genome, and differed among cell types.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 2, 2017
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Yiping He, Victor Velculescu, Nickolas Papadopoulos
  • Publication number: 20170081730
    Abstract: We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 23, 2017
    Applicants: The Johns Hopkins University, Duke University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Sian Jones, Hai Yan, Darell D. Bigner, Chien-Tsun Kuan, Gregory J. Riggins
  • Patent number: 9580750
    Abstract: Given the important role of protein kinases in pathways affecting cellular growth and invasion, we have analyzed 340 serine/threonine kinases for genetic mutations in colorectal cancers. Mutations in eight genes were identified, including three members of the phosphatidylinositol-3-kinase (PI3K) pathway; the alterations in the latter genes each occurred in different tumors and did not overlap with mutations in PIK3CA or other non-serine-threonine kinase (STK) members of the PI3K pathway, suggesting that mutations in any of these genes had equivalent tumorigenic effects. These data demonstrate that the PI3K pathway is a major target for mutational activation in colorectal cancers and provide new opportunities for therapeutic intervention.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: February 28, 2017
    Assignee: The Johns Hopkins University
    Inventors: Donald William Parsons, Tian-li Wang, Yardena Samuels, Alberto Bardelli, Christopher Lengauer, Victor Velculescu, Kenneth W. Kinzler, Bert Vogelstein
  • Publication number: 20170016075
    Abstract: Cancer immunology provides promising new avenues for cancer treatment but validation of potential neoantigens to target is costly and expensive. Analysis of MHC binding affinity, antigen processing, similarity to known antigens, predicted expression levels (as mRNA or proteins), self-similarity, and mutant allele frequency, provides screening method to identify and prioritize candidate neoantigens using sequencing data. Methods of the invention thereby save time and money by identifying the priority candidate neoantigens for further experimental validation.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 19, 2017
    Inventors: Victor Velculescu, Theresa Zhang, James Robert White, Luis Diaz