Patents by Inventor Vijayen S. Veerasamy

Vijayen S. Veerasamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170197877
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Application
    Filed: February 23, 2017
    Publication date: July 13, 2017
    Inventors: Vijayen S. VEERASAMY, Xuequn HU, Glenn A. CERNY
  • Patent number: 9696012
    Abstract: Certain example embodiments of this invention relate to laminated LED arrays, products including such laminated LED arrays, and/or methods of making the same. In certain example embodiments, LEDs may be disposed on a flexible sheet and chained together in an array. An optional beam steering optical element may be used to help redirect the light, even when the LED arrays are disposed on a curved surface and/or at an angle that is not parallel to the intended observer's line of sight. Doing so advantageously makes it possible to ensure that a substantial portion of the axis of the light produced by embedded LEDs coincides with the front-to-rear axis of a vehicle, while still allowing for different angles of the back light for different implementations. Such techniques advantageously may be used in connection with Center High Mount Stop Lamps (CHMSLs); tail lights for cars, trucks, and other vehicles; and/or the like.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 4, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Timothy J. Frey, Robert A. Vandal, Vijayen S. Veerasamy, Jean-Marc Sol
  • Patent number: 9670713
    Abstract: Certain example embodiments of this invention relate to composite pillar arrangements for VIG units that include both harder and softer materials. The softer materials are located on the outside or extremities of the central, harder pillar material. In certain example embodiments, a high aspect ratio mineral lamellae is separated by an organic “glue” or polymer. When provided around a high strength pillar, the combination of the pillar and such a nano-composite structure may advantageously result in superior strength compared to a monolithic system, e.g., where significant wind loads, thermal stresses, and/or the like are encountered.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 6, 2017
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 9651231
    Abstract: In certain example embodiments, light emitting diodes (LEDs) may be disposed on a deformable and flexible backbone sheet and chained together in an array, e.g., via flexible wiggle wires. Such flexible wiggle wires may also provide an electrical connection to an external power source. An optical out-coupling layer stack (OCLS) system may help serve as an index matching layer, heat sink, étendue conserver, etc. The backbone may be formed to a shape tailored to its ultimate application. Applications may include, for example, automotive (such as Center High Mounted Stop Lamp (CHMSL) applications), lighting, signage, and/or other applications. In an example CHMSL application, the deformable sheet with the LED array thereon has a step, sinusoidal, or other shape matched to the angle and/or curvature of the glass such that the LEDs produce light primarily in a direction parallel to a surface on which a vehicle is located.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 16, 2017
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 9604877
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 28, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Xuequn Hu, Glenn A. Cerny
  • Patent number: 9593019
    Abstract: Certain example embodiments relate to methods for large area graphene precipitation onto glass, and associated articles/devices. For example, coated articles including graphene-inclusive films on substrates, and/or methods of making the same, are provided. A metal-inclusive catalyst layer (e.g., of or including Ni and/or the like) is disposed on the substrate. The substrate with the catalyst layer thereon is exposed to a precursor gas and a strain-inducing gas at a temperature of no more than 350-600 degrees C. for 10s or 100s of minutes. Graphene is formed and/or allowed to form both over and contacting the catalyst layer, and between the substrate and the catalyst layer, in making the coated article. The catalyst layer, together with graphene formed thereon, is removed, e.g., through excessive strain introduced into the catalyst layer as associated with the graphene formation. Products including such articles, and/or methods of making the same, also are contemplated.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: March 14, 2017
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20170051399
    Abstract: Certain example embodiments relate to methods for low temperature direct graphene growth on glass, and/or associated articles/devices. In certain example embodiments, a glass substrate has a layer including Ni formed thereon. The layer including Ni has a stress pre-engineered through the implantation of He therein. It also may be preconditioned via annealing and/or the like. A remote plasma-assisted chemical vapor deposition technique is used to form graphene both above and below the Ni-inclusive film. The Ni-inclusive film and the top graphene may be removed via tape and/or the like, leaving graphene on the substrate. Optionally, a silicon-inclusive layer may be formed between the Ni-inclusive layer and the substrate. Products including such articles, and/or methods of making the same, also are contemplated.
    Type: Application
    Filed: June 3, 2016
    Publication date: February 23, 2017
    Inventor: Vijayen S. VEERASAMY
  • Patent number: 9574352
    Abstract: Improved building-integrated photovoltaic systems according to certain example embodiments may include concentrated photovoltaic skylights or other windows having a cylindrical lens array. The skylight may include an insulated glass unit, which may improve the Solar Heat Gain Coefficient (SHGC). The photovoltaic skylight and lens arrays may be used in combination with strip solar cells. Arrangements that involve lateral displacement tracking systems, or static systems (e.g., that are fixed at one, two, or more predefined positions) are contemplated herein. Such techniques may advantageously help to reduce cost per watt related, in part, to the potentially reduced amount of semiconductor material to be used for such example embodiments. A photovoltaic skylight may permit diffuse daylight to pass through into an interior of a building so as to provide lighting inside the building, while the strip solar cells absorb the direct sunlight and convert it to electricity, providing for SHGC tuning.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: February 21, 2017
    Assignee: Guardian Industries Corp.
    Inventors: Willem Den Boer, Jian-gang Weng, Eric Walter Akkashian, Vijayen S. Veerasamy, Scott V. Thomsen
  • Publication number: 20170022096
    Abstract: A method of making a heat treated (HT) or heat treatable coated article. A method of making a coated article includes a step of heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer of or including zinc oxide. Treating the zinc oxide inclusive release layer with plasma including oxygen (e.g., via ion beam treatment) improves thermal stability and/or quality of the product. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed.
    Type: Application
    Filed: August 18, 2016
    Publication date: January 26, 2017
    Inventors: Jens-Peter MULLER, Herbert LAGE, Thorsten FROST, Vijayen S. VEERASAMY
  • Publication number: 20170002603
    Abstract: Certain example embodiments relate to vacuum insulating glass units having pump-out hole seals formed in connection with solder alloys that, when reactively reflowed, wet pre-coated metallic coatings, and/or associated methods. The alloys may be based on materials that form seals at temperatures that will not de-temper glass and/or decompose a laminate, and/or remain hermetic and lack porous structures in their bulks. SAC, InAg, and/or other preform materials may be used in different example embodiments.
    Type: Application
    Filed: June 1, 2016
    Publication date: January 5, 2017
    Inventors: Vijayen S. VEERASAMY, Patricia TUCKER
  • Publication number: 20160355435
    Abstract: Certain example embodiments of this invention relate to ruggedized switchable glazings, and/or methods of making the same. The PDLC stack of certain example embodiments includes an outer substrate, a low-E UV blocking coating deposited on an inner surface of the outer substrate, a first PVB or EVA laminate, a first PET layer, a first TCO layer, the PDLC layer, a second TCO layer, a second PET layer, a second PVB or EVA laminate, and an inner substrate. The substrates may be glass substrates. The low-E UV blocking coating may include at least two layers of or including silver and/or may include one or more IR layers. Thus, certain example embodiments may advantageously reduce one or more problems associated with residual haze, color change, flicker, structural changes in the polymer and/or the LC, degradations in state-switching response times, delamination, etc.
    Type: Application
    Filed: May 9, 2016
    Publication date: December 8, 2016
    Inventor: Vijayen S. VEERASAMY
  • Publication number: 20160356074
    Abstract: A method and apparatus for low temperature laser sealing of bonded articles is disclosed. Hermetic sealing of glass substrates using low temperature sealing techniques that do not adversely affect bulk strength of glass substrates, the environment created between the substrates and/or any components housed within the sealed glass substrates is disclosed. Such low temperature sealing techniques include use of localized laser heating of sealing materials to form a hermetic seal between glass substrates that does not involve heating the entire article to be sealed.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Vijayen S. VEERASAMY, Martin D. BRACAMONTE
  • Patent number: 9499438
    Abstract: Windows for attenuating radio frequency (RF) and infrared (IR) electromagnetic signals, so as to prevent or reduce such signals from emanating from secure facilities (e.g., government and/or military facilities). Example embodiments relate to a window including at least first and second glass substrates, at least first and second low-emissivity (low-E) coatings for blocking at least some IR and RF signals, and at least one transparent conductive oxide (TCO) inclusive coating for blocking at least some RF signals. The TCO inclusive coating may include a layer of or including indium-tin-oxide (ITO) located between at least first and second dielectric layers.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 22, 2016
    Assignee: Guardian Industries Corp.
    Inventors: Jason E. Theios, John M. Mitchell, Vijayen S. Veerasamy
  • Publication number: 20160328053
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Publication number: 20160275409
    Abstract: In certain example embodiments, moisture sensors, defoggers, etc., and/or related methods, are provided. More particularly, certain example embodiments relate to moisture sensors and/or defoggers that may be used in various applications such as, for example, refrigerator/freezer merchandisers, vehicle windows, building windows, etc. When condensation or moisture is detected, an appropriate action may be taken (e.g., actuating windshield wipers, turning on a defroster, triggering the heating of a merchandiser door or window, etc.). Bayesian approaches optionally may be implemented in certain example embodiments in an attempt to improve moisture detection accuracy. For instance, models of various types of disturbances may be developed and, based on live data and a priori information known about the model, a probability of the model being accurate is calculated. If a threshold value is met, the model may be considered a match and, optionally, a corresponding appropriate action may be taken.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventor: Vijayen S. VEERASAMY
  • Patent number: 9450162
    Abstract: Certain example embodiments relate to improved lighting systems and/or methods of making the same. In certain example embodiments, a lighting system includes a glass substrate with one or more apertures. An LED or other light source is disposed at one end of the aperture such that light from the LED directed through the aperture of the glass substrate exits the opposite end of the aperture. Inner surfaces of the aperture have a mirroring material such as silver to reflect the emitted light from the LED. In certain example embodiments, a remote phosphor article or layer is disposed opposite the LED at the other end of the aperture. In certain example embodiment, a lens is disposed in the aperture, between the remote phosphor article and the LED.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 20, 2016
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Jemssy Alvarez
  • Patent number: 9441416
    Abstract: A method and apparatus for low temperature laser sealing of bonded articles is disclosed. Hermetic sealing of glass substrates using low temperature sealing techniques that do not adversely affect bulk strength of glass substrates, the environment created between the substrates and/or any components housed within the sealed glass substrates is disclosed. Such low temperature sealing techniques include use of localized laser heating of sealing materials to form a hermetic seal between glass substrates that does not involve heating the entire article to be sealed.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 13, 2016
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Martin D. Bracamonte
  • Patent number: 9434640
    Abstract: A method of making a heat treated (HT) or heat treatable coated article. A method of making a coated article includes a step of heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer of or including zinc oxide. Treating the zinc oxide inclusive release layer with plasma including oxygen (e.g., via ion beam treatment) improves thermal stability and/or quality of the product. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 6, 2016
    Assignee: Guardian Industries Corp.
    Inventors: Jens-Peter Muller, Herbert Lage, Thorsten Frost, Vijayen S. Veerasamy
  • Patent number: 9433974
    Abstract: Certain example embodiments of this invention relate to techniques for improving the performance of Lambertian and non-Lambertian light sources. In certain example embodiments, this is accomplished by (1) providing an organic-inorganic hybrid material on LEDs (which in certain example embodiments may be a high index of refraction material), (2) enhancing the light scattering ability of the LEDs (e.g., by fractal embossing, patterning, or the like, and/or by providing randomly dispersed elements thereon), and/or (3) improving performance through advanced cooling techniques. In certain example instances, performance enhancements may include, for example, better color production (e.g., in terms of a high CRI), better light production (e.g., in terms of lumens and non-Lambertian lighting), higher internal and/or external efficiency, etc.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 6, 2016
    Assignee: Gaurdian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Jemssy Alvarez
  • Patent number: 9418770
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: August 16, 2016
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy