Patents by Inventor Vikash Banthia

Vikash Banthia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080182382
    Abstract: A method for forming a semiconductor structure includes forming a plurality of features across a surface of a substrate, with at least one space being between two adjacent features. A first dielectric layer is formed on the features and within the at least one space. A portion of the first dielectric layer interacts with a reactant derived from a first precursor and a second precursor to form a first solid product. The first solid product is decomposed to substantially remove the portion of the first dielectric layer. A second dielectric layer is formed to substantially fill the at least one space.
    Type: Application
    Filed: November 29, 2007
    Publication date: July 31, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jing Tang, Yi Zheng, Zheng Yuan, Zhenbin Ge, Xinliang Lu, Chien-Teh Kao, Vikash Banthia, William H. McClintock, Mei Chang
  • Publication number: 20080115726
    Abstract: A chemical vapor deposition method for forming a dielectric material in a trench formed on a substrate. The method includes flowing a silicon-containing precursor into a process chamber housing the substrate, flowing an oxidizing gas into the chamber, and providing a hydroxyl-containing precursor in the process chamber. The method also includes reacting the silicon-containing precursor, oxidizing gas and hydroxyl-containing precursor to form the dielectric material in the trench. The ratio of the silicon-containing precursor to the oxidizing gas flowed into the chamber is increased over time to alter a rate of deposition of the dielectric material.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 22, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Shan Wong, Xinyun Xia, Vikash Banthia, Won B. Bang, Yen-Kun V. Wang
  • Patent number: 7335609
    Abstract: A chemical vapor deposition method for forming a dielectric material in a trench formed on a substrate. The method includes flowing a silicon-containing precursor into a process chamber housing the substrate, flowing an oxidizing gas into the chamber, and providing a hydroxyl-containing precursor in the process chamber. The method also includes reacting the silicon-containing precursor, oxidizing gas and hydroxyl-containing precursor to form the dielectric material in the trench. The ratio of the silicon-containing precursor to the oxidizing gas flowed into the chamber is increased over time to alter a rate of deposition of the dielectric material.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: February 26, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Shan Wong, Xinyun Xia, Vikash Banthia, Won B. Bang, Yen-Kun V. Wang
  • Publication number: 20070212847
    Abstract: A method of annealing a substrate that has a trench containing a dielectric material formed on a silicon nitride layer between the dielectric material and the substrate, where the method includes annealing the substrate at a first temperature of about 800° C. or more in a first atmosphere comprising an oxygen containing gas, and annealing the substrate at a second temperature of about 800° C. to about 1400° C. in a second atmosphere lacking oxygen.
    Type: Application
    Filed: April 5, 2007
    Publication date: September 13, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Ingle, Zheng Yuan, Vikash Banthia, Xinyun Xia, Hali Forstner, Rong Pan
  • Publication number: 20070000897
    Abstract: A method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 200° C. to about 800° C. in a first atmosphere comprising an oxygen containing gas, and annealing the substrate at a second temperature of about 800° C. to about 1400° C. in a second atmosphere lacking oxygen. In addition, a method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 400° C. to about 800° C. in the presence of an oxygen containing gas, purging the oxygen containing gas away from the substrate, and raising the substrate to a second temperature from about 900° C. to about 1100° C. to further anneal the substrate in an atmosphere that lacks oxygen.
    Type: Application
    Filed: June 12, 2006
    Publication date: January 4, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Ingle, Zheng Yuan, Vikash Banthia, Xinyun Xia, Hali Forstner, Rong Pan
  • Publication number: 20060046427
    Abstract: A chemical vapor deposition method for forming a dielectric material in a trench formed on a substrate. The method includes flowing a silicon-containing precursor into a process chamber housing the substrate, flowing an oxidizing gas into the chamber, and providing a hydroxyl-containing precursor in the process chamber. The method also includes reacting the silicon-containing precursor, oxidizing gas and hydroxyl-containing precursor to form the dielectric material in the trench. The ratio of the silicon-containing precursor to the oxidizing gas flowed into the chamber is increased over time to alter a rate of deposition of the dielectric material.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 2, 2006
    Applicant: APPLIED MATERIALS, INC., A Delaware corporation
    Inventors: Nitin Ingle, Shan Wong, Xinyun Xia, Vikash Banthia, Won Bang, Yen-Kun Wang
  • Publication number: 20060030165
    Abstract: A method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 200° C. to about 800° C. in a first atmosphere comprising an oxygen containing gas, and annealing the substrate at a second temperature of about 800° C. to about 1400° C. in a second atmosphere lacking oxygen. In addition, a method of annealing a substrate comprising a trench containing a dielectric material, the method including annealing the substrate at a first temperature of about 400° C. to about 800° C. in the presence of an oxygen containing gas, purging the oxygen containing gas away from the substrate, and raising the substrate to a second temperature from about 900° C. to about 1100° C. to further anneal the substrate in an atmosphere that lacks oxygen.
    Type: Application
    Filed: November 16, 2004
    Publication date: February 9, 2006
    Applicant: APPLIED MATERIALS, INC. A Delaware corporation
    Inventors: Nitin Ingle, Zheng Yuan, Vikash Banthia, Xinyun Xia, Hali Forstner, Rong Pan
  • Publication number: 20050142895
    Abstract: A method to form a silicon oxide layer, where the method includes the step of providing a continuous flow of a silicon-containing precursor to a chamber housing a substrate, where the silicon-containing precursor is selected from TMOS, TEOS, OMTS, OMCTS, and TOMCATS. The method may also include the steps of providing a flow of an oxidizing precursor to the chamber, and causing a reaction between the silicon-containing precursor and the oxidizing precursor to form a silicon oxide layer. The method may further include varying over time a ratio of the silicon-containing precursor:oxidizing precursor flowed into the chamber to alter a rate of deposition of the silicon oxide on the substrate.
    Type: Application
    Filed: December 20, 2004
    Publication date: June 30, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Ingle, Shan Wong, Xinyun Xia, Vikash Banthia, Won Bang, Yen-Kun Wang, Zheng Yuan
  • Patent number: 6843882
    Abstract: A system for processing substrates comprises a plurality of process chambers. Each process chamber includes an inlet gas distribution member connected to an inlet gas line to distribute gas from the inlet gas line into the process chamber, and a gas outlet. The inlet gas distribution member has an inlet gas distribution member impedance to a gas flow through the inlet gas distribution member into the process chamber. The plurality of process chambers are substantially identical. A source gas delivery line is connected to the inlet gas lines of the plurality of process chambers to supply a gas flow to be divided into the inlet gas lines. A plurality of tunable upstream gas restrictors are each disposed in one of the inlet gas lines connected to the inlet gas distribution members of the process chambers and are configured to adjust a flow rate into the corresponding process chamber.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Victor Wang, Vikash Banthia, Teresa Winson, Nitin Ingle
  • Publication number: 20040007176
    Abstract: A system for processing substrates comprises a plurality of process chambers. Each process chamber includes an inlet gas distribution member connected to an inlet gas line to distribute gas from the inlet gas line into the process chamber, a substrate support to support a substrate at a spacing distance from the inlet gas distribution member, and a gas outlet. The inlet gas distribution member has an inlet gas distribution member impedance to a gas flow through the inlet gas distribution member into the process chamber. The plurality of process chambers are substantially identical. A source gas delivery line is connected to the inlet gas lines of the plurality of process chambers to supply a gas flow to be divided into the inlet gas lines. A plurality of tunable upstream gas restrictors are each disposed in one of the inlet gas lines connected to the inlet gas distribution members of the process chambers and are configured to adjust a flow rate into the corresponding process chamber.
    Type: Application
    Filed: October 2, 2002
    Publication date: January 15, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Karthik Janakiraman, Victor Wang, Vikash Banthia, Teresa Winson, Nitin Ingle
  • Publication number: 20020006677
    Abstract: A method and apparatus for analyzing and comparing in real-time the presence of contaminants in a semiconductor substrate processing system. The analysis is made and compared against a statistical baseline of data points established from the analysis of acceptable substrates undergoing the same procedure. A decision can then be made as to whether to remove the wafers for reprocessing. The comparison is to be made not only with the above baseline, but also in accordance with process dependent information provided by a supplemental data port in the processing tool. Thus, the baseline is dynamic and not a static, pre-determined figure.
    Type: Application
    Filed: December 29, 2000
    Publication date: January 17, 2002
    Inventors: John Egermeier, Vikash Banthia, Paul Kiely, Karl Armstrong