Patents by Inventor Vikram M. Bhosle

Vikram M. Bhosle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220028693
    Abstract: An apparatus and method of processing a workpiece is disclosed, where a sacrificial capping layer is created on a top surface of a workpiece. That workpiece is then exposed to an ion implantation process, where select species are used to passivate the workpiece. While the implant process is ongoing, radicals and excited species etch the sacrificial capping layer. This reduces the amount of etching that the workpiece experiences. In certain embodiments, the thickness of the sacrificial capping layer is selected based on the total time used for the implant process and the etch rate. The total time used for the implant process may be a function of desired dose, bias voltage, plasma power and other parameters. In some embodiments, the sacrificial capping layer is applied prior to the implant process. In other embodiments, material is added to the sacrificial capping layer during the implant process.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Inventors: Vikram M. Bhosle, Nicholas P.T. Bateman, Timothy J. Miller, Jun Seok Lee, Deven Raj Mittal
  • Publication number: 20210375590
    Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.
    Type: Application
    Filed: August 13, 2021
    Publication date: December 2, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
  • Patent number: 11120973
    Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: September 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
  • Publication number: 20200357611
    Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 12, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
  • Patent number: 10804075
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 13, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P T Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 10446371
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon or neon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a processing species and a halogen is introduced into a ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure processing species ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: October 15, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero
  • Patent number: 10290466
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Publication number: 20180122618
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon or neon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a processing species and a halogen is introduced into a ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure processing species ions than would occur if the third source gas were not used.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 3, 2018
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero
  • Publication number: 20180068830
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 9887067
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon or neon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a processing species and a halogen is introduced into a ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure processing species ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: February 6, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero
  • Patent number: 9865430
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 9, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 9780250
    Abstract: An improved method of doping a workpiece is disclosed. The method is particularly beneficial to the creation of interdigitated back contact (IBC) solar cells. A patterned implant is performed on one surface of the workpiece. A self-aligned masking process is then performed, which is achieved by exploiting the changes in surface properties caused by the patterned implant. The masking process includes applying a coating that preferentially adheres to the previously implanted regions. A blanket implant is then performed, which serves to implant the portions of the workpiece that are not covered by the coating. Thus, the blanket implant is actually a complementary implant, doping the regions that were not implanted by the first patterned implant. The coating is then optionally removed from the workpiece.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: October 3, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Vikram M. Bhosle, Timothy J. Miller, Tapash Chakraborty, Prerna Goradia, Robert J. Visser
  • Publication number: 20170207361
    Abstract: An improved method of doping a workpiece is disclosed. The method is particularly beneficial to the creation of interdigitated back contact (IBC) solar cells. A patterned implant is performed on one surface of the workpiece. A self-aligned masking process is then performed, which is achieved by exploiting the changes in surface properties caused by the patterned implant. The masking process includes applying a coating that preferentially adheres to the previously implanted regions. A blanket implant is then performed, which serves to implant the portions of the workpiece that are not covered by the coating. Thus, the blanket implant is actually a complementary implant, doping the regions that were not implanted by the first patterned implant. The coating is then optionally removed from the workpiece.
    Type: Application
    Filed: January 14, 2016
    Publication date: July 20, 2017
    Inventors: Vikram M. Bhosle, Timothy J. Miller, Tapash Chakraborty, Prerna Goradia, Robert J. Visser
  • Publication number: 20170062182
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 9524849
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 20, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 9478679
    Abstract: A method of processing a solar cell is disclosed, where the edges of the solar cell are covered, coated or masked during the ion implantation process and/or the screen printing process. This covering may be a substance that blocks the penetration of ions during implantation, or may be a substance that resists the diffusion of fritted metal paste during the metallization process. In some embodiments, the edges are covered during both of these processes. In further embodiments, the same material may perform both functions.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: October 25, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nicholas P. T. Bateman, Vikram M. Bhosle, Bon-Woong Koo
  • Publication number: 20160163510
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Application
    Filed: November 23, 2015
    Publication date: June 9, 2016
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Publication number: 20160163509
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon or neon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a processing species and a halogen is introduced into a ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure processing species ions than would occur if the third source gas were not used.
    Type: Application
    Filed: April 21, 2015
    Publication date: June 9, 2016
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero
  • Publication number: 20150162457
    Abstract: A method of processing a solar cell is disclosed, where the edges of the solar cell are covered, coated or masked during the ion implantation process and/or the screen printing process. This covering may be a substance that blocks the penetration of ions during implantation, or may be a substance that resists the diffusion of fritted metal paste during the metallization process. In some embodiments, the edges are covered during both of these processes. In further embodiments, the same material may perform both functions.
    Type: Application
    Filed: November 24, 2014
    Publication date: June 11, 2015
    Inventors: Nicholas P.T. Bateman, Vikram M. Bhosle, Bon-Woong Koo
  • Patent number: 9034743
    Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 19, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas P T Bateman