Patents by Inventor Vinay K. PRABHAKAR
Vinay K. PRABHAKAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12191115Abstract: A plasma processing system is described. The system may include a showerhead. The system may further include a first RF generator in electrical communication with the showerhead. The first RF generator may be configured to deliver a first voltage at a first frequency to the showerhead. Additionally, the system may include a second RF generator in electrical communication with a pedestal. The second RF generator may be configured to deliver a second voltage at a second frequency to the pedestal. The second frequency may be less than the first frequency. The system may also include a terminator in electrical communication with the showerhead. The terminator may provide a path to ground for the second voltage. Methods of depositing material using the plasma processing system are described. A method of seasoning a chamber by depositing silicon oxide and silicon nitride on the wall of the chamber is also described.Type: GrantFiled: November 25, 2019Date of Patent: January 7, 2025Assignee: Applied Materials, Inc.Inventors: Venkata Sharat Chandra Parimi, Xiaoquan Min, Zheng John Ye, Prashant Kumar Kulshreshtha, Vinay K Prabhakar, Lu Xu, Kwangduk Douglas Lee
-
Patent number: 12136549Abstract: In one or more embodiments, a method for depositing a carbon hard-mask material by plasma-enhanced chemical vapor deposition (PECVD) includes heating a substrate contained within a process chamber to a temperature in a range from about 100 C to about 700 C and producing a plasma with a power generator emitting an RF power of greater than 3 kW. In some examples, the temperature is in a range from about 300 C to about 700 C and the RF power is greater than 3 kW to about 7 kW. The method also includes flowing a hydrocarbon precursor into the plasma within the process chamber and forming a carbon hard-mask layer on the substrate at a rate of greater than 5,000/min, such as up to about 10,000/min or faster.Type: GrantFiled: March 21, 2019Date of Patent: November 5, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Byung Seok Kwon, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Bushra Afzal, Sungwon Ha, Vinay K. Prabhakar, Viren Kalsekar, Satya Teja Babu Thokachichu, Edward P. Hammond, IV
-
Publication number: 20240186121Abstract: Exemplary choke plates for use in a substrate processing system may include a plate defining a first aperture through the plate and a second aperture through the plate. The second aperture may be laterally offset from the first aperture. The plate may include a flange that defines a purging inlet. The plate may include a rim defining a plurality of purging outlets that are fluidly coupled with the purging inlet. Each of the plurality of purging outlets may be fluidly coupled with the first aperture.Type: ApplicationFiled: December 6, 2022Publication date: June 6, 2024Applicant: Applied Materials, Inc.Inventors: Vellaichamy Nagappan, Viren Kalsekar, Jeongmin Lee, Vinay K. Prabhakar, Pratap Chandran, Dharma Ratnam Srichurnam, Azhar Khan, Sumit Subhash Singh, Siva Chandrasekar, Satish Radhakrishnan
-
Patent number: 12000048Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.Type: GrantFiled: February 20, 2023Date of Patent: June 4, 2024Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
-
Patent number: 11984305Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.Type: GrantFiled: January 2, 2023Date of Patent: May 14, 2024Assignee: Applied Materials, Inc.Inventors: Viren Kalsekar, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi
-
Publication number: 20240047185Abstract: Exemplary substrate processing systems may include a lid plate. The systems may include a gas feed line having an RPS outlet and a bypass outlet. The systems may include a remote plasma unit supported atop the lid plate. The remote plasma unit may include an inlet and an outlet. The inlet may be coupled with the RPS outlet. The systems may include a center manifold having an RPS inlet coupled with the outlet and a bypass inlet coupled with the bypass outlet. The center manifold may include a plurality of outlet ports. The systems may include a plurality of side manifolds that are fluidly coupled with the outlet ports. Each of the side manifolds may define a gas lumen. The systems may include a plurality of output manifolds seated on the lid plate. Each output manifold may be fluidly coupled with the gas lumen of one of the side manifolds.Type: ApplicationFiled: August 3, 2022Publication date: February 8, 2024Applicant: Applied Materials, Inc.Inventors: Abhijit A. Kangude, Badri N. Ramamurthi, Arun Chakravarthy Chakravarthy, Vinay K. Prabhakar, Dharma Ratnam Srichurnam
-
Patent number: 11875969Abstract: A processing system comprises a chamber body, a substrate support and a lid assembly. The substrate support is located in the chamber body and comprises a first electrode. The lid assembly is positioned over the chamber body and defines a processing volume. The lid assembly comprises a faceplate, a second electrode positioned between the faceplate and the chamber body, and an insulating member positioned between the second electrode and the processing volume. A power supply system is coupled to the first electrode and the faceplate and is configured to generate a plasma in the processing volume.Type: GrantFiled: April 23, 2020Date of Patent: January 16, 2024Assignee: Applied Materials, Inc.Inventors: Fei Wu, Abdul Aziz Khaja, Sungwon Ha, Vinay K. Prabhakar, Ganesh Balasubramanian
-
Patent number: 11830706Abstract: Embodiments of the present disclosure generally relate to a pedestal for increasing temperature uniformity in a substrate supported thereon. The pedestal comprises a body having a heater embedded therein. The body comprises a patterned surface that includes a first region having a first plurality of posts extending from a base surface of the body at a first height, and a second region surrounding the central region having a second plurality of posts extending from the base surface at a second height that is greater than the first height, wherein an upper surface of each of the first plurality of posts and the second plurality of posts are substantially coplanar and define a substrate receiving surface.Type: GrantFiled: December 4, 2019Date of Patent: November 28, 2023Assignee: Applied Materials, Inc.Inventors: Venkata Sharat Chandra Parimi, Zubin Huang, Jian Li, Satish Radhakrishnan, Rui Cheng, Diwakar N. Kedlaya, Juan Carlos Rocha-Alvarez, Umesh M. Kelkar, Karthik Janakiraman, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Byung Seok Kwon
-
Publication number: 20230298922Abstract: Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.Type: ApplicationFiled: May 23, 2023Publication date: September 21, 2023Applicant: Applied Materials, Inc.Inventors: Abdul Aziz KHAJA, Venkata Sharat Chandra PARIMI, Sarah Michelle BOBEK, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR
-
Publication number: 20230265560Abstract: Disclosed herein is a pumping liner, having a gas inlet configured to receive a process gas; openings in communication with the gas inlet, the openings configured to surround a substrate support and to direct the process gas onto the substrate support. At least a portion of the openings each has a different size. Each of the openings is configured to provide a gas mass flow rate that is within ±5% of a target gas mass flow rate. The pumping liner further includes a gas outlet configured to receive unreacted process gas and reacted process gas byproducts.Type: ApplicationFiled: January 30, 2023Publication date: August 24, 2023Inventors: Badri Narayan Ramamurthi, Viren Sunil Kalsekar, Vinay K. Prabhakar
-
Publication number: 20230203659Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.Type: ApplicationFiled: February 20, 2023Publication date: June 29, 2023Applicant: Applied Materials, Inc.Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR, Kwangduk Douglas LEE, Sungwon HA, Jian LI
-
Patent number: 11682574Abstract: Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.Type: GrantFiled: November 7, 2019Date of Patent: June 20, 2023Assignee: Applied Materials, Inc.Inventors: Abdul Aziz Khaja, Venkata Sharat Chandra Parimi, Sarah Michelle Bobek, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar
-
Publication number: 20230170190Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.Type: ApplicationFiled: January 26, 2023Publication date: June 1, 2023Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Abdul Aziz KHAJA, Vinay K. PRABHAKAR
-
Publication number: 20230151487Abstract: The present disclosure relates to systems and methods for reducing the formation of hardware residue and minimizing secondary plasma formation during substrate processing in a process chamber. The process chamber may include a gas distribution member configured to flow a first gas into a process volume and generate a plasma therefrom. A second gas is supplied into a lower region of the process volume. Further, an exhaust port is disposed in the lower region to remove excess gases or by-products from the process volume during or after processing.Type: ApplicationFiled: January 20, 2023Publication date: May 18, 2023Inventors: Liangfa HU, Prashant Kumar KULSHRESHTHA, Anjana M. PATEL, Abdul Aziz KHAJA, Viren KALSEKAR, Vinay K. PRABHAKAR, Satya Teja Babu THOKACHICHU, Byung Seok KWON, Ratsamee LIMDULPAIBOON, Kwangduk Douglas LEE, Ganesh BALASUBRAMANIAN
-
Publication number: 20230147452Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.Type: ApplicationFiled: January 2, 2023Publication date: May 11, 2023Applicant: Applied Materials, Inc.Inventors: Viren KALSEKAR, Vinay K. PRABHAKAR, Venkata Sharat Chandra PARIMI
-
Publication number: 20230124246Abstract: Exemplary substrate processing systems may include a lid plate. The systems may include a gas splitter seated on the lid plate. The gas splitter may include a top surface and side surfaces. The gas splitter may define a first and second gas inlets, with each gas inlet extending through one side surface. The gas splitter may define first and second gas outlets extending through the top surface. The gas splitter may define first and second gas lumens that extend between and fluidly couple each gas inlet with corresponding gas outlets. The gas splitter may define mixing channels that include a mixing outlet extending through a side surface and a mixing inlet extending through the top surface. The systems may include output manifolds seated on the lid plate. The systems may include output weldments that fluidly couple each mixing outlet with a respective one of the output manifolds.Type: ApplicationFiled: October 19, 2021Publication date: April 20, 2023Applicant: Applied Materials, Inc.Inventors: Arun Chakravarthy Chakravarthy, Vinay K. Prabhakar, Dharma Ratnam Srichurnam, Hossein Rezvantalab
-
Publication number: 20230069317Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body. The lid plate may define a first plurality of apertures and a second plurality of apertures. The systems may include a plurality of lid stacks equal to a number of the first plurality of apertures. Each lid stack may include a choke plate seated on the lid plate along a first surface of the choke plate. The choke plate may define a first aperture axially aligned with an associated aperture of the first plurality of apertures. The choke plate may define a second aperture axially aligned with an associated aperture of the second plurality of apertures. The choke plate may define protrusions extending from each of a top and bottom surface of the choke plate that are arranged substantially symmetrically about the first aperture.Type: ApplicationFiled: August 25, 2021Publication date: March 2, 2023Applicant: Applied Materials, Inc.Inventors: Siva Chandrasekar, Satish Radhakrishnan, Viren Kalsekar, Vellaichamy Nagappan, Vinay K. Prabhakar
-
Patent number: 11584994Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.Type: GrantFiled: December 16, 2019Date of Patent: February 21, 2023Assignee: Applied Materials, Inc.Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
-
Patent number: 11587773Abstract: A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.Type: GrantFiled: March 10, 2020Date of Patent: February 21, 2023Assignee: Applied Materials, Inc.Inventors: Viren Kalsekar, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi
-
Patent number: 11569072Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.Type: GrantFiled: April 23, 2019Date of Patent: January 31, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Abdul Aziz Khaja, Vinay K. Prabhakar