Patents by Inventor Vincent C. Moretti

Vincent C. Moretti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11024936
    Abstract: Methods of RFID tag assembly include affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 1, 2021
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 10116033
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: October 30, 2018
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 9317799
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: April 19, 2016
    Assignee: IMPINJ, INC.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 9076049
    Abstract: Systems, methods of operation, and software are provided, for encoding RFID tags with which a predefined group of items is tagged. Encoding is by writing applicable Electronic Product Codes (EPCs) to the tags, so as to identify the individual items in the group. A base code can be read from each tag, and the applicable EPC is then written to it.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: July 7, 2015
    Assignee: Impinj, Inc.
    Inventors: Vincent C. Moretti, Christopher J. Diorio, John A. Schroeter
  • Patent number: 8988199
    Abstract: A Radio Frequency Identification (RFID) system uses read difficulty factors (RDFs) to improve tag-parameter estimation. During inventory, a reader can obtain a tag's item identifier (II), determine a read metric such as a received signal strength indicator (RSSI), retrieve an RDF associated with the II, and adjust the RSSI using the RDF to more accurately estimate a tag parameter such as distance from the reader antenna. The system can then use the estimated distance to categorize the tag.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Impinj, Inc.
    Inventors: Vincent C. Moretti, Robert C. Collins
  • Patent number: 8810376
    Abstract: Systems, methods of operation, and software are provided, for encoding RFID tags with which a predefined group of items is tagged. Encoding is by writing applicable Electronic Product Codes (EPCs) to the tags, so as to identify the individual items in the group. A base code can be read from each tag, and the applicable EPC is then written to it.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Impinj, Inc.
    Inventors: Brent A. Picasso, Vincent C. Moretti, Christopher J. Diorio, John A. Schroeter
  • Patent number: 8661652
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 4, 2014
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 8188927
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Impinj, Inc.
    Inventors: Ronald Lee Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 7973645
    Abstract: Radio frequency identification (RFID) reader devices are disclosed. An RFID reader device of one aspect may include a radio frequency (RF) output port operable to allow a plurality of RFID antenna modules to be coupled with the RFID reader device. An RF signal generator of the device may be coupled with the RF output port. The RF signal generator may be operable to generate an RF signal and provide the RF signal to the RF output port. A select signal generator of the device may be operable to generate a select signal. The select signal may be operable to be output to select one or more of the plurality of RFID antenna modules.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: July 5, 2011
    Assignee: Impinj, Inc.
    Inventors: Vincent C. Moretti, Mendy M. Ouzillou, Michael H. Thomas, Omer Onen, Ronald A. Oliver
  • Patent number: 6947500
    Abstract: The invention is a receiver and a method of receiving data having a preferred application in a satellite receiver in accordance with the invention includes a memory (114) including an addressable storage array which stores a sequence of data samples contained in a time division multiplexed signal from a plurality channels (X, Y and Z) and outputs the stored data samples in a sequence of data groups with each data group containing a plurality of samples from one of the plurality of channels; and a decoder (116), responsive to the data groups, which decodes the data samples within the data groups and outputs decoded data samples.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: September 20, 2005
    Assignee: Northrop Grumman Corporation
    Inventors: Dominic P. Carrozza, Vincent C. Moretti, David A. Wright, Gregory S. Caso
  • Patent number: 6813320
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: November 2, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Bert K. Oyama, Eric L. Upton, Barry R. Allen, Mark Kintis, Andrew D. Smith, Craig R. Talbott, David J. Brunone, Donald R. Martin, William M. Skones, Ronald P. Smith, Vincent C. Moretti
  • Patent number: 6804308
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: October 12, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Bert K. Oyama, Mark Kintis, Andrew D. Smith, Craig R. Talbott, Donald R. Martin, William M. Skones, Vincent C. Moretti
  • Patent number: 6801583
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels. In one embodiment, the frequency down-conversion is performed in a single down-conversion process, and the ADC (20) employs delta-sigma processing to provide digital conversion over the complete frequency band.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: October 5, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Bert K. Oyama, Mark Kintis, Andrew D. Smith, Craig R. Talbott, Donald R. Martin, William M. Skones, Ronald P. Smith, Vincent C. Moretti
  • Patent number: 6798848
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: September 28, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Bert K. Oyama, Mark Kintis, Andrew D. Smith, Craig R. Talbott, Donald R. Martin, William M. Skones, Ronald P. Smith, Vincent C. Moretti
  • Patent number: 6735421
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: May 11, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Barry R. Allen, Mark Kintis, Andrew D. Smith, Craig R. Talbott, David J. Brunone, Donald R. Martin, William M. Skones, Vincent C. Moretti
  • Patent number: 6697344
    Abstract: An initial entry processor (40) for use in a processing satellite (12) in a satellite based communications system (10) is provided having a buffer (62), a detection and timing circuit (64) and an identity circuit (66). The buffer (62) stores an initial entry burst (54) transmitted from at least one terrestrial terminal (14) to the processing satellite (12). The detection and timing circuit (64) detects the initial entry burst (54) and determines a time of arrival of the initial entry burst (54) relative to an initial entry burst slot (52). The identity circuit (66) determines an identity of the terrestrial terminal (14) that transmitted the initial entry burst (54) such that the time of arrival is used by the identified terrestrial terminal (14) during subsequent communications with the processing satellite (12).
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: February 24, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Dominic P. Carrozza, Gregory S. Caso, Vincent C. Moretti, Reginald Jue, David A. Wright
  • Patent number: 6662018
    Abstract: A power control system for a multi-carrier base station transmitter is capable of controlling power levels of individual RF carriers. The power control system has a multi-channel amplification system for converting a plurality of analog input signals into a plurality of amplified carrier signals. The amplification system also generates a plurality of reference signals corresponding to the amplified carrier signals. Furthermore, the amplification system generates a multi-carrier signal, where the multi-carrier signal includes a summation of the amplified carrier signals. A correlating power detection system is connected to the amplification system, where the correlating power detection system generates total power control signals based on the reference signals and the multi-carrier signal.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: December 9, 2003
    Assignee: Northrop Grumman Corporation
    Inventors: Mark Kintis, Donald R. Martin, Vincent C. Moretti
  • Patent number: 6631255
    Abstract: A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: October 7, 2003
    Assignee: Northrop Grumman Corporation
    Inventors: Shimen K. Claxton, Bert K. Oyama, Barry R. Allen, Mark Kintis, Andrew D. Smith, Craig R. Talbott, David J. Brunone, Donald R. Martin, William M. Skones, Vincent C. Moretti
  • Patent number: 6535720
    Abstract: A power control system for a multi-carrier base station transmitter is capable of controlling power levels of individual RF carriers. The power control system has a multi-channel conversion system for generating a plurality of analog reference signals corresponding to a plurality of digital input signals. The multi-channel conversion system also generates an analog multi-carrier signal and samples the multi-carrier signal. The multi-carrier signal represents a summed amplification of the digital input signals. A correlating power detection system is connected to the multi-channel conversion system and generates digital total power control signals based on the analog reference signals and the analog sampled multi-carrier signal. A feedback conversion module is connected to the multi-channel conversion system and the correlating power detection system and individually controls amplification of the digital input signals based on the total power control signals.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: March 18, 2003
    Assignee: TRW Inc.
    Inventors: Mark Kintis, Donald R. Martin, Vincent C. Moretti
  • Patent number: 6445685
    Abstract: An uplink demodulator system (44) for use in a processing satellite (12) in a satellite based communications system (10) is provided with a first multiplexer (62), a second multiplexer (82), a multichannel preamble processor (66), and a multichannel phase tracker (68). The first multiplexer (62) is operable to receive channelized data from a plurality of channelization modes at a plurality of inputs and operable to route the channelized data to a first output. The multichannel preamble processor (66) is operable to determine a phase estimate for each channel of the channelized data. The multichannel phase tracker (68) is operable to receive the phase estimates from the multichannel preamble processor (66) and operable to track a phase for each channel of said channelized data to phase align each channel of said channelized data to corresponding uplink signals.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: September 3, 2002
    Assignee: TRW Inc.
    Inventors: Dominic P. Carrozza, Vincent C. Moretti, Stuart T. Linsky, David A. Wright, Gregory S. Caso