Patents by Inventor Vincent Linder

Vincent Linder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8915259
    Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 23, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: Enqing Tan, Vincent Linder, Jason Taylor, David Steinmiller
  • Publication number: 20140342350
    Abstract: Fluidic devices and methods associated with mixing of fluids in fluidic devices are provided. In some embodiments, a method may involve the mixing of two or more fluids in a channel segment of a fluidic device. The fluids may be in the form of, for example, at least first, second and third fluid plugs, composed of first, second, and third fluids, respectively. The second fluid may be immiscible with the first and third fluids. In certain embodiments, the fluid plugs may be flowed in series in the channel segment, e.g., in linear order, causing the first and third fluids to mix without the use of active components such as mixers. The mixing of fluids in a channel segment as described herein may allow for improved performance and simplification in the design and operations of fluidic devices that rely on mixing of fluids.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 20, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Matthew Dirckx, Vincent Linder, Jason Taylor
  • Publication number: 20140308168
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder
  • Publication number: 20140272935
    Abstract: Fluidic devices and methods associated with mixing of fluids in fluidic devices are provided. In some embodiments, a method may involve the mixing of two or more fluids in a channel segment of a fluidic device. The fluids may be in the form of, for example, at least first, second and third fluid plugs, composed of first, second, and third fluids, respectively. The second fluid may be immiscible with the first and third fluids. In certain embodiments, the fluid plugs may be flowed in series in the channel segment, e.g., in linear order, causing the first and third fluids to mix without the use of active to components such as mixers. The mixing of fluids in a channel segment as described herein may allow for improved performance and simplification in the design and operations of fluidic devices that rely on mixing of fluids.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 18, 2014
    Applicant: OPKO DIAGNOSTICS, LLC
    Inventors: MATTHEW DIRCKX, VINCENT LINDER, JASON TAYLOR
  • Publication number: 20140234180
    Abstract: Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
    Type: Application
    Filed: May 1, 2014
    Publication date: August 21, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Jason Taylor
  • Patent number: 8802029
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 12, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder
  • Patent number: 8802445
    Abstract: Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: August 12, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Samual K. Sia
  • Publication number: 20140205997
    Abstract: Fluidic connectors, methods, and devices for performing analyses (e.g., immunoassays) in microfluidic systems are provided. In some embodiments, a fluidic connector having a fluid path is used to connect two independent channels formed in a substrate so as to allow fluid communication between the two independent channels. One or both of the independent channels may be pre-filled with reagents (e.g., antibody solutions, washing buffers and amplification reagents), which can be used to perform the analysis. These reagents may be stored in the channels of the substrate for long periods amounts of time (e.g., 1 year) prior to use.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Samuel K. Sia
  • Patent number: 8765062
    Abstract: Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 1, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Jason Taylor
  • Publication number: 20140134603
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Application
    Filed: September 30, 2013
    Publication date: May 15, 2014
    Inventors: Samuel K. Sia, Vincent Linder, Babak Amir-parviz, Adam Siegel, George M. Whitesides
  • Publication number: 20140093866
    Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Enqing Tan, Vincent Linder, Jason Taylor, David Steinmiller
  • Publication number: 20140038167
    Abstract: A method and apparatus for delivering one or more fluids. Fluids may be delivered sequentially from a common vessel to a chemical, biological or biochemical process.
    Type: Application
    Filed: January 31, 2013
    Publication date: February 6, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: VINCENT LINDER, SAMUEL K. SIA, GEORGE M. WHITESIDES
  • Publication number: 20140038166
    Abstract: Systems and methods for controlling fluids in microfluidic systems are generally described. In some embodiments, control of fluids involves the use of feedback from one or more processes or events taking place in the microfluidic system. For instance, a detector may detect one or more fluids at a measurement zone of a microfluidic system and one or more signals, or a pattern of signals, may be generated corresponding to the fluid(s). In some cases, the signal or pattern of signals may correspond to an intensity, a duration, a position in time relative to a second position in time or relative to another process, and/or an average time period between events. Using this data, a control system may determine whether to modulate subsequent fluid flow in the microfluidic system. In some embodiments, these and other methods can be used to conduct quality control to determine abnormalities in operation of the microfluidic system.
    Type: Application
    Filed: October 2, 2013
    Publication date: February 6, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller
  • Publication number: 20140023565
    Abstract: Fluidic devices and methods including those that provide storage and/or facilitate fluid handling of reagents are provided. Fluidic devices described herein may include channel segments positioned on two sides of an article, optionally connected by an intervening channel passing through the article. The channel segments may be used to store reagents in the device prior to first use by an end user. The stored reagents may include fluid plugs positioned in linear order so that during use, as fluids flow to a reaction site, they are delivered in a predetermined sequence. The specific geometries of the channel segments and the positions of the channel segments within the fluidic devices described herein may allow fluid reagents to be stored for extended periods of time without mixing, even during routine handling of the devices such as during shipping of the devices, and when the devices are subjected to physical shock or vibration.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: OPKO Diagnostics, LLC
    Inventors: Jason Taylor, Vincent Linder
  • Patent number: 8591829
    Abstract: Fluidic devices and methods including those that provide storage and/or facilitate fluid handling of reagents are provided. Fluidic devices described herein may include channel segments positioned on two sides of an article, optionally connected by an intervening channel passing through the article. The channel segments may be used to store reagents in the device prior to first use by an end user. The stored reagents may include fluid plugs positioned in linear order so that during use, as fluids flow to a reaction site, they are delivered in a predetermined sequence. The specific geometries of the channel segments and the positions of the channel segments within the fluidic devices described herein may allow fluid reagents to be stored for extended periods of time without mixing, even during routine handling of the devices such as during shipping of the devices, and when the devices are subjected to physical shock or vibration.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 26, 2013
    Assignee: OPKO Diagnostics, LLC
    Inventors: Jason Taylor, Vincent Linder
  • Patent number: 8580569
    Abstract: Systems and methods for controlling fluids in microfluidic systems are generally described. In some embodiments, control of fluids involves the use of feedback from one or more processes or events taking place in the microfluidic system. For instance, a detector may detect one or more fluids at a measurement zone of a microfluidic system and one or more signals, or a pattern of signals, may be generated corresponding to the fluid(s). In some cases, the signal or pattern of signals may correspond to an intensity, a duration, a position in time relative to a second position in time or relative to another process, and/or an average time period between events. Using this data, a control system may determine whether to modulate subsequent fluid flow in the microfluidic system. In some embodiments, these and other methods can be used to conduct quality control to determine abnormalities in operation of the microfluidic system.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 12, 2013
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller
  • Patent number: 8574924
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 5, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Samuel K. Sia, Vincent Linder, Babak Amir-Parviz, Adam Siegel, George M. Whitesides
  • Patent number: 8567425
    Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: October 29, 2013
    Assignee: OPKO Diagnostics, LLC
    Inventors: Enqing Tan, Vincent Linder, Jason Taylor, David Steinmiller
  • Publication number: 20130273643
    Abstract: Methods and apparatuses for predicting risk of prostate cancer and/or prostate gland volume are provided. More particularly, this disclosure relates to methods and apparatuses for providing the models and employing the models for predicting risk of prostate cancer and/or predicting prostate gland volume. The methods and apparatuses for predicting risk of prostate cancer and/or prostate gland volume are provided using, at least in part, information from a panel of kallikrein markers.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 17, 2013
    Applicant: Arctic Partners Oy
    Inventors: Andrew J. Vickers, Peter T. Scardino, Hans Lija, Vincent Linder, David Steinmiller
  • Publication number: 20130252321
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: IOKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder