Patents by Inventor Vineet Mehta

Vineet Mehta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7688222
    Abstract: A traffic informational system provides information to traffic moving along a road and may include a plurality of traffic information devices mountable to the road, each having an integral power producing source, at least a first set of illumination sources, and a wireless communications subsystem. The traffic informational system may further include at least a first external control device comprising at least one antenna and a transmitter communication wirelessly with the traffic information devices and/or with one another. The traffic information device may communicate with one another, and may include sensor for sensing ambient conditions. The system employs various approaches to reducing power consumption and improving communications, and is suitable for a wide range of applications, including use in remote environments.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: March 30, 2010
    Assignee: Spot Devices, Inc.
    Inventors: Timm Peddie, David P. Bim-Merle, Thomas A. Burnham, Daniel O. Santos, Lawrence E. Miller, Vineet Mehta, Johannes B. Van Niekerk
  • Publication number: 20090256723
    Abstract: A traffic informational system provides information to traffic moving along a road and may include a plurality of traffic information devices mountable to the road, each having an integral power producing source, at least a first set of illumination sources, and a wireless communications subsystem. The traffic informational system may further include at least a first external control device comprising at least one antenna and a transmitter communication wirelessly with the traffic information devices and/or with one another. The traffic information device may communicate with one another, and may include sensor for sensing ambient conditions. The system employs various approaches to reducing power consumption and improving communications, and is suitable for a wide range of applications, including use in remote environments.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 15, 2009
    Applicant: SPOT DEVICES, INC.
    Inventors: Timm Peddie, David P. Bim-Merle, Thomas A. Burnham, Daniel O. Santos, Lawrence E. Miller, Vineet Mehta, Johannes B. Van Niekerk
  • Publication number: 20090201622
    Abstract: A substrate support has an electrostatic chuck comprising an electrostatic puck with a dielectric covering an electrode capable of being charged to energize a process gas. The chuck has a frontside surface to receive a substrate and a base plate having an annular flange. A spring loaded heat transfer plate contacts the base plate, and has a fluid channel comprising first and second spiral channels. A pedestal is below the heat transfer plate.
    Type: Application
    Filed: December 4, 2008
    Publication date: August 13, 2009
    Inventors: Karl Brown, Semyon Sherstinsky, Wei W. Wang, Cheng-Hsiung Tsai, Vineet Mehta, Allen Lau, Steve Sansoni
  • Patent number: 7513971
    Abstract: An RF coil for a plasma etch chamber is provided in which the RF coil is substantially flat over a portion of at least one turn of the coil. In one embodiment, each turn of the coil is substantially flat over a majority of each turn. In one embodiment of the present inventions, each turn of the coil is substantially flat over approximately 300 degrees of the turn. In the final approximate 60 degrees of the turn, the coil is sloped down to the next turn. Each turn thus comprises a substantially flat portion in combination with a sloped portion interconnecting the turn to the next adjacent turn. In one embodiment, the RF coil having turns with substantially flat portions is generally cylindrical. Other shapes are contemplated such as a dome shape. In some applications such as an RF plasma etch reactor, it is believed that providing an RF coil having turns comprising flat portions with sloped portions interconnecting the flat portions can improve uniformity of the etch process.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Vineet Mehta, See-Eng Phan
  • Patent number: 7480129
    Abstract: A detachable electrostatic chuck can be attached to a pedestal in a process chamber. The electrostatic chuck has an electrostatic puck comprising a dielectric covering at least one electrode and a frontside surface to receive a substrate. A backside surface of the chuck has a central protrusion that can be a D-shaped mesa to facilitate alignment with a mating cavity in the pedestal. The protrusion can also have asymmetrically offset apertures, which further assist alignment, and also serve to receive electrode terminal posts and a gas tube. A heat transfer plate having an embedded heat transfer fluid channel is spring loaded on the pedestal to press against the chuck for good heat transfer.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Semyon Sherstinsky, Wei W. Wang, Cheng-Hsiung Tsai, Vineet Mehta, Allen Lau, Steve Sansoni
  • Publication number: 20080276958
    Abstract: A substrate cleaning chamber includes a contoured ceiling electrode having an arcuate surface that faces a substrate support and has a variable cross-sectional thickness to vary the gap size between the arcuate surface and the substrate support to provide a varying plasma density across the substrate support. A dielectric ring for the cleaning chamber comprises a base, a ridge, and a radially inward ledge that covers the peripheral lip of the substrate support. A base shield comprises a circular disc having at least one perimeter wall. Cleaning and conditioning processes for the cleaning chamber are also described.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Vineet Mehta, Karl Brown, John A. Pipitone, Daniel J. Hoffman, Steven C. Shannon, Keith A. Miller, Vijay D. Parkhe
  • Patent number: 7399943
    Abstract: A plasma reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber. A process gas inlet is coupled to the chamber and a process gas source coupled to the process gas inlet. The reactor further includes a metal sputter target at the ceiling, a high voltage D.C. source coupled to the sputter target, an RF plasma source power generator coupled to the wafer support pedestal and having a frequency suitable for exciting kinetic electrons, and an RF plasma bias power generator coupled to the wafer support pedestal and having a frequency suitable for coupling energy to plasma ions.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Patent number: 7268076
    Abstract: Physical vapor deposition and re-sputtering of a barrier layer in an integrated circuit is performed by providing a metal target near a ceiling of the chamber and a wafer support pedestal facing the target near a floor of the chamber. A process gas is introduced into said vacuum chamber. A target-sputtering plasma is maintained at the target to produce a stream of principally neutral atoms flowing from the target toward the wafer for vapor deposition. A wafer-sputtering plasma is maintained near the wafer support pedestal to produce a stream of sputtering ions toward the wafer support pedestal for re-sputtering. The sputtering ions are accelerated across a plasma sheath at the wafer in a direction normal to a surface of the wafer to render the sputter etching highly selective for horizontal surfaces.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 11, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Publication number: 20070193982
    Abstract: A physical vapor deposition reactor includes a vacuum chamber with a sidewall, a ceiling and a retractable wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber, the retractable wafer support pedestal having an internal electrode and a grounded base with a conductive annular flange extending from the base. A metal sputter target at the ceiling is energized by a high voltage D.C. source. The reactor has an RF plasma source power generator with a frequency suitable for exciting kinetic electrons is coupled to either the sputter target or to the internal electrode of the pedestal.
    Type: Application
    Filed: May 22, 2006
    Publication date: August 23, 2007
    Inventors: Karl Brown, Semyon Sherstinksy, Vineet Mehta, Wei Wang, John Pipitone, Kurt Ahmann, Armando Valverde
  • Patent number: 7252737
    Abstract: Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: August 7, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Vineet Mehta, See-Eng Phan, Semyon Sherstinsky, Allen Lau
  • Patent number: 7244344
    Abstract: A physical vapor deposition plasma reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber, a process gas inlet coupled to the chamber and a process gas source coupled to the process gas inlet, a metal sputter target at the ceiling, a high voltage D.C. source coupled to the sputter target, an RF plasma source power generator coupled to the wafer support pedestal and having a frequency in a range between about 60 MHz and 81 MHz, and an RF plasma bias power generator coupled to the wafer support pedestal and having a frequency suitable for coupling energy to plasma ions.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: July 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta, Ralf Hofmann, Wei W. Wang, Semyon Sherstinsky
  • Patent number: 7214619
    Abstract: A barrier layer is formed in an integrated circuit by providing a metal target near a ceiling of the chamber and a wafer support pedestal facing the target near a floor of the chamber. A process gas is introduced into the vacuum chamber. A target-sputtering plasma is maintained at the target to produce a stream of principally neutral atoms flowing from the target toward the wafer for vapor deposition. A wafer-sputtering plasma is maintained near the wafer support pedestal to produce a stream of sputtering ions toward the wafer support pedestal for re-sputtering. The sputtering ions are accelerated across a plasma sheath at the wafer in a direction normal to a surface of the wafer to render the sputter etching highly selective for horizontal surfaces.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: May 8, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Publication number: 20060191876
    Abstract: The invention concerns a method of performing physical vapor deposition in a reactor chamber on a workpiece positioned on a workpiece support facing the metal sputter target. The method includes sputtering atoms from the metal sputter target by applying a low level of target bias power to the metal sputter target to produce a correspondingly low metal deposition rate on the workpiece. The method further includes ionizing the atoms sputtered from the metal sputter target to an ionization fraction in excess of about 50% by applying a high level of VHF source power to the metal sputter target through a solid large diameter RF feed rod that engages the metal sputter target. The low level of target bias power can be as low as about 500 Watts although it may range up to about 2500 Watts. Preferably, the target bias power is D.C. power. The RF feed rod may be threadably engaged into a receptacle in the center of a top surface of the metal sputter target.
    Type: Application
    Filed: September 7, 2005
    Publication date: August 31, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta
  • Publication number: 20060169576
    Abstract: A physical vapor deposition plasma reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber, a process gas inlet coupled to the chamber and a process gas source coupled to the process gas inlet, a metal sputter target at the ceiling, a high voltage D.C. source coupled to the sputter target, an RF plasma source power generator coupled to the wafer support pedestal and having a frequency in a range between about 60 MHz and 81 MHz, and an RF plasma bias power generator coupled to the wafer support pedestal and having a frequency suitable for coupling energy to plasma ions.
    Type: Application
    Filed: May 25, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta, Ralf Hofmann, Wei Wang, Semyon Sherstinsky
  • Publication number: 20060172536
    Abstract: A method of performing physical vapor deposition of copper onto an integrated circuit in a vacuum chamber of a plasma reactor includes providing a copper target near a ceiling of the chamber, placing an integrated circuit wafer on a wafer support pedestal facing the target near a floor of the chamber, introducing a carrier gas into the vacuum chamber, maintaining a target-sputtering plasma at the target to produce a stream comprising at least one of copper atoms and copper ions flowing from the target toward the wafer support pedestal for vapor deposition, and maintaining a wafer-sputtering plasma near the wafer support pedestal by capacitively coupling plasma RF source power to the wafer-sputtering plasma. The frequency of the RF source power is sufficiently high to limit ion energy near the surface of the wafer so that the principal portion of the power provides plasma ion generation.
    Type: Application
    Filed: May 25, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta, Ralf Hofmann
  • Publication number: 20060169584
    Abstract: A physical vapor deposition reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, a vacuum pump coupled to the chamber, a process gas inlet coupled to the chamber and a process gas source coupled to the process gas inlet. A metal sputter target is located at the ceiling and a high voltage D.C. source coupled to the sputter target. An RF plasma source power generator is coupled to the metal sputter target and has a frequency suitable for exciting kinetic electrons. Preferably, the wafer support pedestal comprises an electrostatic chuck and an RF plasma bias power generator is coupled to the wafer support pedestal having a frequency suitable for coupling energy to plasma ions. Preferably, a solid metal RF feed rod having a diameter in excess of about 0.5 inches engages the metal sputter target, the RF feed rod extending axially above the target through the ceiling and being coupled to the RF plasma source power generator.
    Type: Application
    Filed: September 7, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta
  • Publication number: 20060169582
    Abstract: A physical vapor deposition reactor includes a metal sputter target, a D.C. sputter power source coupled to the metal sputter target and a wafer support pedestal facing the metal sputter target. A movable magnet array is adjacent a side of the metal sputter target opposite the wafer support pedestal. A solid metal RF feed rod engages the metal sputter target and extends from a surface of the target on a side opposite the wafer support pedestal. A VHF impedance match circuit is coupled to an end of the RF feed rod opposite the metal sputter target and a VHF RF power generator coupled to said VHF impedance match circuit. Preferably, the reactor of further includes a center axle about which the movable magnet array is rotatable, the center axle having an axially extending hollow passageway, the RF feed rod extending through the passageway.
    Type: Application
    Filed: September 7, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta
  • Publication number: 20060169578
    Abstract: A method of performing physical vapor deposition of copper onto an integrated circuit in a vacuum chamber of a plasma reactor includes providing a copper target near a ceiling of the chamber, placing an integrated circuit wafer on a wafer support pedestal facing the target near a floor of the chamber, introducing a carrier gas into the vacuum chamber having an atomic weight substantially less than the atomic weight of copper, maintaining a target-sputtering plasma at the target to produce a stream comprising at least one of copper atoms and copper ions flowing from the target toward the wafer support pedestal for vapor deposition, maintaining a wafer-sputtering plasma near the wafer support pedestal by capacitively coupling plasma RF source power to the wafer-sputtering plasma, and accelerating copper ions of the wafer sputtering plasma in a direction normal to a surface of the wafer support pedestal.
    Type: Application
    Filed: May 25, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta, Ralf Hofmann
  • Publication number: 20060172517
    Abstract: A method of performing physical vapor deposition of copper onto an integrated circuit in a vacuum chamber of a plasma reactor, includes providing a copper target near a ceiling of the chamber, placing an integrated circuit wafer on a wafer support pedestal facing the target, introducing a carrier gas into the vacuum chamber, and establishing a deposition rate on the wafer by applying D.C. power to the copper target while establishing a plasma ionization fraction by applying VHF power to the copper target. The method can further include promoting re-sputtering of copper on vertical surfaces on the wafer by coupling HF or LF power to the wafer. The method preferably includes maintaining a target magnetic field at the target and scanning the target magnetic field across the target.
    Type: Application
    Filed: September 7, 2005
    Publication date: August 3, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta
  • Publication number: 20060073700
    Abstract: A barrier layer is formed in an integrated circuit by providing a metal target near a ceiling of the chamber and a wafer support pedestal facing the target near a floor of the chamber. A process gas is introduced into the vacuum chamber. A target-sputtering plasma is maintained at the target to produce a stream of principally neutral atoms flowing from the target toward the wafer for vapor deposition. A wafer-sputtering plasma is maintained near the wafer support pedestal to produce a stream of sputtering ions toward the wafer support pedestal for re-sputtering. The sputtering ions are accelerated across a plasma sheath at the wafer in a direction normal to a surface of the wafer to render the sputter etching highly selective for horizontal surfaces.
    Type: Application
    Filed: February 3, 2005
    Publication date: April 6, 2006
    Inventors: Karl Brown, John Pipitone, Vineet Mehta