Patents by Inventor Vinod Kamath

Vinod Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10045463
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9943936
    Abstract: Methods, apparatuses, and computer program products for forming an overmolded dual in-line memory module (DIMM) cooling structure are provided. Embodiments include identifying, by a tagging module, contextual information indicating circumstances in which the photograph was taken; based on the contextual information, selecting, by the tagging module, candidate profiles from a plurality of friend profiles associated with a profile of a user; and suggesting, by the tagging module to the user, the selected candidate profiles as potential friends to tag in the photograph.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: April 17, 2018
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Michael A. Boraas, Vinod Kamath, Michael S. Miller, Mark E. Steinke, Jamil A. Wakil
  • Patent number: 9936607
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9930807
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: March 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9930806
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: March 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9668382
    Abstract: A system includes a chassis, a plurality of nodes, a coolant distribution unit (CDU), and one or more air movers. The chassis includes multiple node bays, a CDU bay, a coolant supply manifold with an inlet in the CDU bay and an outlet in each node bay, and a coolant return manifold an inlet in each node bay and an outlet in the CDU bay. Each node is received into a node bay with an internal heat exchanger connected between a coolant supply and return manifolds. The CDU is received in the CDU bay and includes an air-to-coolant heat exchanger in fluid communication between the supply and return manifolds, and a pump for circulating a coolant through a coolant loop. The one or more air movers force air across the air-to-coolant heat exchanger of the CDU.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 30, 2017
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Mark E. Steinke, Derek I. Schmidt, Jason A. Matteson, Vinod Kamath
  • Publication number: 20170049009
    Abstract: A system includes a chassis, a plurality of nodes, a coolant distribution unit (CDU), and one or more air movers. The chassis includes multiple node bays, a CDU bay, a coolant supply manifold with an inlet in the CDU bay and an outlet in each node bay, and a coolant return manifold an inlet in each node bay and an outlet in the CDU bay. Each node is received into a node bay with an internal heat exchanger connected between a coolant supply and return manifolds. The CDU is received in the CDU bay and includes an air-to-coolant heat exchanger in fluid communication between the supply and return manifolds, and a pump for circulating a coolant through a coolant loop. The one or more air movers force air across the air-to-coolant heat exchanger of the CDU.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 16, 2017
    Inventors: Mark E. Steinke, Derek I. Schmidt, Jason A. Matteson, Vinod Kamath
  • Patent number: 9414523
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: August 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20160173421
    Abstract: Embodiments of the invention provide a method, system and computer program product for verification of message content in a real time messaging system. The method includes contextually analyzing a thread of messages in a user interface of the real time messaging system, the thread defining a conversation between a composer and one or more recipients of the messages, the analysis determining a context of the conversation. The method further includes loading a new message to be transmitted as part of the thread, parsing text of the new message and analyzing the parsed text to determine a context. The method yet further includes comparing the determined context of the new message to the determined context of the conversation. Finally, the method includes displaying in the user interface a warning to the composer when the context of the new message differs from the context of the conversation.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 16, 2016
    Inventors: Shareef Alshinnawi, Gary D. Cudak, Christopher J. Hardee, Vinod Kamath, Jason A. Matteson
  • Patent number: 9307674
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 5, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9185830
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 10, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9179574
    Abstract: A cooling unit and cooling method are provided for a container-type data center. The cooling unit includes a heat rejection unit, for rejecting heat from coolant passing through a coolant loop to air passing across the heat rejection unit, and a refrigeration unit controllable to selectively provide auxiliary cooling to at least a portion of the coolant passing through the coolant loop. The heat rejection unit includes a heat exchange assembly, having a first heat exchanger and a second heat exchanger, and one or more air-moving devices providing airflow across the first and second heat exchangers. The first heat exchanger couples in fluid communication with the coolant loop, and the second heat exchanger is coupled in fluid communication with a refrigeration loop of the refrigeration unit for rejecting heat from refrigerant passing through the refrigeration loop to the airflow passing across the second heat exchanger.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 3, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian A. Canney, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Roger R. Schmidt
  • Patent number: 9132519
    Abstract: A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 15, 2015
    Assignee: INTERNTIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Patrick A. Coico, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9127813
    Abstract: Methods, apparatuses, and computer program products for responding to moisture at one or more zones around an outer surface of a liquid-carrying pipe are provided. Embodiments include monitoring, by a moisture correction controller, a plurality of moisture sensors, each moisture sensor configured to detect moisture at a separate zone around the outer surface of the liquid-carrying pipe; based on the monitoring of the plurality of moisture sensors, calculating and tracking, for each zone, a level of moisture detected by a moisture sensor; based on the tracked levels of moisture detected at the zones, selecting, between condensation or a leak from within the liquid-carrying pipe as a source of the moisture detected at the zones around the liquid-carrying pipe; and administering a corrective action based on the selection of the source of the moisture detected at the zones around the liquid-carrying pipe.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: September 8, 2015
    Assignee: Lenovo Enterprise (Singapore) Pte. Ltd.
    Inventors: Keith M. Campbell, Vinod Kamath, Christopher L. Wood
  • Patent number: 9110642
    Abstract: A computer-implemented method comprises accessing historical operating data for a unit of information technology equipment, wherein the historical operating data includes power consumption, fan speed, inlet air temperature, workload, and any processor throttling events at various points in time. The method further comprises receiving user input selecting a fan speed, and using the historical operating data to determine a performance impact that is expected from operating the unit at the selected fan speed, where the power consumption is a proxy for performance. The estimated performance impact of the selected fan speed and one or more alternative fan speeds is then displayed.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: August 18, 2015
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Thomas M. Brey, Vinod Kamath, Jason A. Matteson, Billy W. Medlin
  • Patent number: 9089076
    Abstract: An apparatus and method is provided for conveying heat away from an electronic component. In one embodiment, a method positions a conformable thermal interface element in heat conducting contact with an electronic component. A heat conducting member is disposed within the conformable thermal interface element. The heat conducting member is coupled with a manifold so that the heat conducting member is in heat conducting contact with the manifold. The electronic component may be installed or removed without disassembly of the apparatus.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron R. Cox, William J. Grady, IV, Vinod Kamath, Jason A. Matteson, Jason E. Minyard
  • Publication number: 20150138715
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Application
    Filed: December 9, 2014
    Publication date: May 21, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Patent number: 9027360
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20150114602
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150116941
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE