Patents by Inventor Vinod R. Purayath

Vinod R. Purayath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9030016
    Abstract: A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 12, 2015
    Assignee: Sandisk Technologies Inc.
    Inventors: Vinod R. Purayath, James K. Kai, Jayavel Pachamuthu, Jarrett Jun Liang, George Matamis
  • Patent number: 8987087
    Abstract: A method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material over a substrate. The first material comprises an electrically insulating material and the second material comprises a semiconductor or conductor material. The method also includes etching the stack to form a front side opening in the stack, forming a blocking dielectric layer over the stack of alternating layers of a first material and a second material exposed in the front side opening, forming a semiconductor or metal charge storage layer over the blocking dielectric, forming a tunnel dielectric layer over the charge storage layer, forming a semiconductor channel layer over the tunnel dielectric layer, etching the stack to form a back side opening in the stack, removing at least a portion of the first material layers and portions of the blocking dielectric layer.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 24, 2015
    Assignee: Sandisk Technologies Inc.
    Inventors: Henry Chien, Donovan Lee, Vinod R. Purayath, Yuan Zhang, James K. Kai, George Matamis
  • Publication number: 20150008502
    Abstract: A method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material over a substrate. The first material comprises an electrically insulating material and the second material comprises a semiconductor or conductor material. The method also includes etching the stack to form a front side opening in the stack, forming a blocking dielectric layer over the stack of alternating layers of a first material and a second material exposed in the front side opening, forming a semiconductor or metal charge storage layer over the blocking dielectric, forming a tunnel dielectric layer over the charge storage layer, forming a semiconductor channel layer over the tunnel dielectric layer, etching the stack to form a back side opening in the stack, removing at least a portion of the first material layers and portions of the blocking dielectric layer.
    Type: Application
    Filed: May 20, 2014
    Publication date: January 8, 2015
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Henry Chien, Donovan Lee, Vinod R. Purayath, Yuan Zhang, James K. Kai, George Matamis
  • Publication number: 20150008505
    Abstract: A method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material over a substrate. The first material comprises an electrically insulating material and the second material comprises a semiconductor or conductor material. The method also includes etching the stack to form a front side opening in the stack, forming a blocking dielectric layer over the stack of alternating layers of a first material and a second material exposed in the front side opening, forming a semiconductor or metal charge storage layer over the blocking dielectric, forming a tunnel dielectric layer over the charge storage layer, forming a semiconductor channel layer over the tunnel dielectric layer, etching the stack to form a back side opening in the stack, removing at least a portion of the first material layers and portions of the blocking dielectric layer.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 8, 2015
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Henry Chien, Donovan Lee, Vinod R. Purayath, Yuan Zhang, James K. Kai, George Matamis
  • Publication number: 20140346583
    Abstract: A non-volatile memory system, comprising non-volatile storage device with word lines having an inverted T-shape over floating gates. The inverted T-shape shape has a wider bottom portion and a thinner top portion. The thinner top portion increases the separation between adjacent word lines relative to the separation between the wider bottom portions. An air gap may separate adjacent word lines. The thinner top portion of the word lines increases the path length between adjacent word lines. The likelihood of word line to word line short may be decreased by reducing the electric field between adjacent word lines.
    Type: Application
    Filed: November 5, 2013
    Publication date: November 27, 2014
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Vinod R. Purayath, James Kai, Donovan Lee, Yuan Zhang, Akira Matsudaira
  • Publication number: 20140346584
    Abstract: An embodiment relates to a memory device that includes a semiconductor channel, a tunnel dielectric located over the semiconductor channel, a charge storage region located over the tunnel dielectric, a blocking dielectric located over the charge storage region, and a control gate located over the blocking dielectric. An interface between the blocking dielectric and the control gate substantially prevents oxygen diffusion from the blocking dielectric into the control gate.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Inventors: Vinod R. Purayath, James Kai, Donovan Lee, Akira Matsudaira, Yuan Zhang
  • Patent number: 8877586
    Abstract: A process for forming reversible resistance-switching memory cells having resistance-switching nano-particles which provide a reduced contact area to top and bottom electrodes of the memory cells, thereby limiting a peak current. Recesses are formed in a layered semiconductor material above the bottom electrodes, and one or more coatings of nano-particles are applied. The nano-particles self-assemble in the recesses so that they are positioned in a controlled manner. A top electrode material is then deposited. In one approach, the recesses are formed by spaced-apart trenches, and the nano-particles self-assemble along the spaced-apart trenches. In another approach, the recesses for each resistance-switching memory cell are separate from one another, and the resistance-switching memory cells are pillar-shaped. The coatings can be provided in one layer, or in multiple layers which are separated by an insulation layer.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 4, 2014
    Assignee: SanDisk 3D LLC
    Inventors: James K Kai, Takashi W Orimoto, Vinod R Purayath, George Matamis
  • Publication number: 20140252447
    Abstract: A memory device and a method of making a memory device that includes a semiconductor channel, a tunnel dielectric layer located over the semiconductor channel, a floating gate located over the tunnel dielectric layer, the floating gate comprising a continuous layer of an electrically conductive material and at least one protrusion of an electrically conductive material facing the tunnel dielectric layer and electrically shorted to the continuous layer, a blocking dielectric region located over the floating gate, and a control gate located over the blocking dielectric layer.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: SANDISK TECHNOLOGIES, INC.
    Inventors: Donovan Lee, James K. Kai, George Samachisa, Henry Chien, George Matamis, Vinod R. Purayath
  • Publication number: 20140213032
    Abstract: A process for forming reversible resistance-switching memory cells having resistance-switching nano-particles which provide a reduced contact area to top and bottom electrodes of the memory cells, thereby limiting a peak current. Recesses are formed in a layered semiconductor material above the bottom electrodes, and one or more coatings of nano-particles are applied. The nano-particles self-assemble in the recesses so that they are positioned in a controlled manner. A top electrode material is then deposited. In one approach, the recesses are formed by spaced-apart trenches, and the nano-particles self-assemble along the spaced-apart trenches. In another approach, the recesses for each resistance-switching memory cell are separate from one another, and the resistance-switching memory cells are pillar-shaped. The coatings can be provided in one layer, or in multiple layers which are separated by an insulation layer.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: SANDISK 3D LLC
    Inventors: James K. Kai, Takashi W. Orimoto, Vinod R. Purayath, George Matamis
  • Patent number: 8778749
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Air gaps are formed at least partially in isolation regions between active areas of the substrate. The air gaps may further extend above the substrate surface between adjacent layer stack columns. A sacrificial material is formed at least partially in the isolation regions, followed by forming a dielectric liner. The sacrificial material is removed to define air gaps prior to forming the control gate layer and then etching it and the layer stack columns to form individual control gates and columns of non-volatile storage elements.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 15, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Jayavel Pachamuthu, Vinod R. Purayath, George Matamis
  • Publication number: 20140120692
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Electrical isolation between adjacent active areas of a substrate can be provided, at least in part, by bit line air gaps that are elongated in a column direction between the active areas. At least one cap is formed over each isolation region, at least partially overlying air to provide an upper endpoint for the corresponding air gap. The caps may be formed at least partially along the sidewalls of adjacent charge storage regions. In various embodiments, selective growth processes are used to form capping strips over the isolation regions to define the air gaps. Word line air gaps that are elongated in a row direction between adjacent rows of storage elements are also provided.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 1, 2014
    Applicant: SanDisk Technologies Inc.
    Inventors: Vinod R. Purayath, Hiroyuki Kinoshita, Tuan Pham
  • Patent number: 8710481
    Abstract: A non-volatile memory device includes a plurality of non-volatile memory cells. Each of the non-volatile memory cells includes a first electrode, a diode steering element, a storage element located in series with the diode steering element, a second electrode, and a nano-rail electrode having a width of 15 nm or less.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: April 29, 2014
    Assignee: SanDisk 3D LLC
    Inventors: James K. Kai, Henry Chien, George Matamis, Vinod R. Purayath
  • Publication number: 20140008804
    Abstract: A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 9, 2014
    Applicant: SanDisk Technologies, Inc.
    Inventors: Vinod R. Purayath, James K. Kai, Jayavel Pachamuthu, Jarrett Jun Liang, George Matamis
  • Patent number: 8575000
    Abstract: A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: November 5, 2013
    Assignee: SanDisk Technologies, Inc.
    Inventors: Vinod R. Purayath, James K. Kai, Jayavel Pachamuthu, Jarrett Jun Liang, George Matamis
  • Patent number: 8530297
    Abstract: Fabricating non-volatile storage includes creating gate stacks with hard masks on top of the gate stacks. The gate stacks include two polysilicon layers and a dielectric layer between the two polysilicon layers. A portion of the hard mask over each gate stack is removed, leaving two separate tapered sections of each of the hard masks positioned above an upper polysilicon layer of the gate stacks. After the removing the portion of the hard masks, fluorine is implanted into the upper polysilicon layer of the gate stacks. Metal is added on the top surface of the upper polysilicon layer of the floating gate stacks. A silicidation process for the metal and the upper polysilicon layer of the gate stacks is preformed and the remaining tapered sections of the hard mask are removed. Other control lines can then be added.
    Type: Grant
    Filed: April 18, 2010
    Date of Patent: September 10, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Jayavel Pachamuthu, Vinod R. Purayath
  • Publication number: 20130187114
    Abstract: A non-volatile memory device includes a plurality of non-volatile memory cells. Each of the non-volatile memory cells includes a first electrode, a diode steering element, a storage element located in series with the diode steering element, a second electrode, and a nano-rail electrode having a width of 15 nm or less.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: SanDisk 3D LLC
    Inventors: James K. Kai, Henry Chien, George Matamis, Vinod R. Purayath
  • Publication number: 20130105881
    Abstract: A non-volatile memory fabrication process includes the formation of a complete memory cell layer stack before isolation region formation. The memory cell layer stack includes an additional place holding control gate layer. After forming the layer stack columns, the additional control gate layer will be incorporated between an overlying control gate layer and underlying intermediate dielectric layer. The additional control gate layer is self-aligned to isolation regions between columns while the overlying control gate layer is etched into lines for contact to the additional control gate layer. In one embodiment, the placeholder control gate layer facilitates a contact point to the overlying control gate layer such that contact between the control gate layers and the charge storage layer is not required for select gate formation.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Inventors: James K. Kai, Vinod R. Purayath, George Matamis, Nima Mokhlesi, Cuong Trinh
  • Publication number: 20130020708
    Abstract: A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Applicant: SanDisk Technologies, Inc
    Inventors: Vinod R. Purayath, James K. Kai, Jayavel Pachamuthu, Jarrett Jun Liang, George Matamis
  • Publication number: 20120178235
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Air gaps are formed at least partially in isolation regions between active areas of the substrate. The air gaps may further extend above the substrate surface between adjacent layer stack columns. A sacrificial material is formed at least partially in the isolation regions, followed by forming a dielectric liner. The sacrificial material is removed to define air gaps prior to forming the control gate layer and then etching it and the layer stack columns to form individual control gates and columns of non-volatile storage elements.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 12, 2012
    Inventors: Jayavel Pachamuthu, Vinod R. Purayath, George Matamis
  • Patent number: 8105867
    Abstract: A self-aligned fabrication process for three-dimensional non-volatile memory is disclosed. A double etch process forms conductors at a given level in self-alignment with memory pillars both underlying and overlying the conductors. Forming the conductors in this manner can include etching a first conductor layer using a first repeating pattern in a given direction to form a first portion of the conductors. Etching with the first pattern also defines two opposing sidewalls of an underlying pillar structure, thereby self-aligning the conductors with the pillars. After etching, a second conductor layer is deposited followed by a semiconductor layer stack. Etching with a second pattern that repeats in the same direction as the first pattern is performed, thereby forming a second portion of the conductors that is self-aligned with overlying layer stack lines. These layer stack lines are then etched orthogonally to define a second set of pillars overlying the conductors.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 31, 2012
    Assignee: SanDisk 3D LLC
    Inventors: George Matamis, Henry Chien, James K Kai, Takashi Orimoto, Vinod R Purayath, Er-Xuan Ping, Roy E Scheuerlein