Patents by Inventor Vinodh Gopal

Vinodh Gopal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190042257
    Abstract: Disclosed embodiments relate to matrix compress/decompress instructions. In one example, a processor includes fetch circuitry to fetch a compress instruction having a format with fields to specify an opcode and locations of decompressed source and compressed destination matrices, decode circuitry to decode the fetched compress instructions, and execution circuitry, responsive to the decoded compress instruction, to: generate a compressed result according to a compress algorithm by compressing the specified decompressed source matrix by either packing non-zero-valued elements together and storing the matrix position of each non-zero-valued element in a header, or using fewer bits to represent one or more elements and using the header to identify matrix elements being represented by fewer bits; and store the compressed result to the specified compressed destination matrix.
    Type: Application
    Filed: September 27, 2018
    Publication date: February 7, 2019
    Inventors: Dan BAUM, Michael ESPIG, James GUILFORD, Wajdi K. FEGHALI, Raanan SADE, Christopher J. HUGHES, Robert VALENTINE, Bret TOLL, Elmoustapha OULD-AHMED-VALL, Mark J. CHARNEY, Vinodh GOPAL, Ronen ZOHAR, Alexander F. HEINECKE
  • Publication number: 20190042611
    Abstract: Technologies for determining unique values include a computing device that further includes one or more accelerator devices. Each accelerator device is to receive input data and query configuration data, the input data including a packed array of unsigned integers of column data from a database and the query configuration data including an element width of the input data, and generate, in response to receiving the query configuration data, a bit-map output table based on the query configuration data, generate a write request for each element of the input data to set a corresponding bit-map output bit of the bit-map output table which corresponds to an element value of the corresponding element. Subsequently, the accelerator device is further to set the corresponding bit-map output bit to indicate a presence of the corresponding element and output the bit-map output table indicative of unique elements that are present in the input data.
    Type: Application
    Filed: January 11, 2018
    Publication date: February 7, 2019
    Inventors: Kirk Yap, James Guilford, Daniel Cutter, Vinodh Gopal
  • Publication number: 20190042496
    Abstract: Apparatus, systems and methods for implementing delayed decompression schemes. As a burst of packets comprising compressed packets and uncompressed packets are received over an interconnect link, they are buffered in a receive buffer without decompression. Subsequently, the packets are forwarded from the receive buffer to a consumer such as processor core, with the compressed packets being decompressed prior to reaching the processor core. Under a first delayed decompression approach, packets are decompressed when they are read from the receive buffer in conjunction with forwarding the uncompressed packet (or uncompressed data contained therein) to the consumer. Under a second delayed decompression scheme, the packets are read from the receive buffer and forwarded to a decompressor using a first datapath width matching the width of the packets, decompressed, and then forwarded to the consumer using a second datapath width matching the width of the uncompressed data.
    Type: Application
    Filed: September 24, 2018
    Publication date: February 7, 2019
    Inventors: Simon N. Peffers, Kirk S. Yap, Sean Gulley, Vinodh Gopal, Wajdi Feghali
  • Publication number: 20190042481
    Abstract: Systems, methods, and circuitries are disclosed for a per-process memory encryption system. At least one translation lookaside buffer (TLB) is configured to encode key identifiers for keys in one or more bits of either the virtual memory address or the physical address. The process state memory configured to store a first process key table for a first process that maps key identifiers to unique keys and a second process key table that maps the key identifiers to different unique keys. The active process key table memory configured to store an active key table. In response to a request for data corresponding to a virtual memory address, the at least one TLB is configured to provide a key identifier for the data to the active process key table to cause the active process key table to return the unique key mapped to the key identifier.
    Type: Application
    Filed: September 28, 2018
    Publication date: February 7, 2019
    Inventors: Wajdi Feghali, Vinodh Gopal, Kirk Yap, Sean Gulley, Raghunandan Makaram
  • Publication number: 20190045031
    Abstract: Methods and apparatus for low-latency link compression schemes. Under the schemes, selected packets or messages are dynamically selected for compression in view of current transmit queue levels. The latency incurred during compression and decompression is not added to the data-path, but sits on the side of the transmit queue. The system monitors the queue depth and, accordingly, initiates compression jobs based on the depth. Different compression levels may be dynamically selected and used based on queue depth. Under various schemes, either packets or messages are enqueued in the transmit queue or pointers to such packets and messages are enqueued. Additionally, packets/message may be compressed prior to being enqueued, or after being enqueued, wherein an original uncompressed packet is replaced with a compressed packet. Compressed and uncompressed packets may be stored in queues or buffers and transmitted using a different numbers of transmit cycles based on their compression ratios.
    Type: Application
    Filed: June 21, 2018
    Publication date: February 7, 2019
    Inventors: Wajdi Feghali, Vinodh Gopal, Kirk Yap, Sean Gulley, Simon Peffers
  • Publication number: 20190042249
    Abstract: Methods and apparatuses relating to high-performance authenticated encryption are described.
    Type: Application
    Filed: April 2, 2018
    Publication date: February 7, 2019
    Inventors: VIKRAM SURESH, SANU MATHEW, SUDHIR SATPATHY, VINODH GOPAL
  • Publication number: 20190044531
    Abstract: A processor comprises a first memory to store data elements that are encoded according to a floating point format including a sign field, an exponent field, and a significand field; and a compression engine comprising circuitry, the compression engine to generate a compressed data block that is to include a tag type per data element, wherein responsive to a determination that a first data element includes a value in its exponent field that does not match a value of any entry in a dictionary, a first tag type and an uncompressed value of the data element are included in the compressed data block; and responsive to a determination that a second data element includes a value in its exponent field that matches a value of a first entry in the dictionary, a second tag type and a compressed value of the data element are included in the compressed data block.
    Type: Application
    Filed: May 11, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: James D. Guilford, Vinodh Gopal, Kirk S. Yap, Olivia K. Wu
  • Patent number: 10198248
    Abstract: Technologies for executing a serial data processing algorithm on a single variable length data buffer includes streaming segments of the buffer into a data register, executing the algorithm on each of the segments in parallel, and combining the results of executing the algorithm on each of the segments to form the output of the serial data processing algorithm.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 5, 2019
    Assignee: Intel Corporation
    Inventors: Sean M. Gulley, Wajdi K. Feghali, Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Kirk S. Yap
  • Publication number: 20190034493
    Abstract: Data element filter logic (“hardware accelerator”) in a processor that offloads computation for an in-memory database select/extract operation from a Central Processing Unit (CPU) core in the processor is provided. The Data element filter logic provides a balanced performance across an entire range of widths (number of bits) of data elements in a column-oriented Database Management System.
    Type: Application
    Filed: December 28, 2017
    Publication date: January 31, 2019
    Inventors: Vinodh GOPAL, Kirk S. YAP, James GUILFORD, Simon N. PEFFERS
  • Publication number: 20190034490
    Abstract: Technologies for determining set membership include a computing device that further includes one or more accelerator devices. Each accelerator device is to receive input data and definition table configuration data, the input data including a packed unsigned integers of column data from database and the definition table configuration data including a set membership query condition, generate a definition table indicative of element values that satisfy the set membership query condition, generate a lookup request for an element of the column data of the input data, perform the lookup request by accessing the definition table to determine whether the element satisfies the set membership query condition, and generate output indicative of whether the element is a member of the set membership.
    Type: Application
    Filed: December 28, 2017
    Publication date: January 31, 2019
    Inventors: Kirk Yap, James Guilford, Daniel Cutter, Vinodh Gopal
  • Patent number: 10191684
    Abstract: Technologies for flexibly compressing data include a computing device having an accelerator complex that is to receive a compression job request and schedule the compression job request for one or more hardware compression resources of the accelerator complex. The accelerator complex is further to perform the compression job request with the one or more hardware compression resources in response to scheduling the compression job request and to communicate uncompressed data and compressed data with an I/O subsystem of the computing device in response to performing the compression job request. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, James D. Guilford, Kirk S. Yap, Daniel F. Cutter, Wajdi K. Feghali
  • Patent number: 10187201
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G Dixon, Srinivas Chennupaty, Michael E Kounavis
  • Patent number: 10181945
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: January 15, 2019
    Assignee: INTEL CORPORATION
    Inventors: Shay Gueron, Wajdi K. Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G. Dixon, Srinivas Chennupaty, Michael E. Kounavis
  • Patent number: 10177782
    Abstract: Methods and apparatuses relating to data decompression are described. In one embodiment, a hardware processor includes a core to execute a thread and offload a decompression thread for an encoded, compressed data stream comprising a literal code, a length code, and a distance code, and a hardware decompression accelerator to execute the decompression thread to selectively provide the encoded, compressed data stream to a first circuit to serially decode the literal code to a literal symbol, serially decode the length code to a length symbol, and serially decode the distance code to a distance symbol, and selectively provide the encoded, compressed data stream to a second circuit to look up the literal symbol for the literal code from a table, look up the length symbol for the length code from the table, and look up the distance symbol for the distance code from the table.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: January 8, 2019
    Assignee: Intel Corporation
    Inventors: Sudhir K. Satpathy, James D. Guilford, Sanu K. Mathew, Vinodh Gopal, Vikram B. Suresh
  • Publication number: 20190004726
    Abstract: One embodiment provides an apparatus. The apparatus include a device storage logic. The device storage logic is to determine a key-based pointer based, at least in part, on a key included in an input key-value (KV) pair received from a host device and to determine whether a unique input KV data block included in the input KV pair is duplicated in a nonvolatile memory circuitry of a storage device.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Applicant: Intel Corporation
    Inventors: PENG LI, JAWAD B. KHAN, SANJEEV N. TRIKA, VINODH GOPAL
  • Patent number: 10171231
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 1, 2019
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G Dixon, Srinivas Chennupaty, Michael E Kounavis
  • Patent number: 10169073
    Abstract: Methods and apparatuses relating to stateful compression and decompression operations are described. In one embodiment, hardware processor includes a core to execute a thread and offload at least one of a compression and decompression thread, and a hardware compression and decompression accelerator to execute the at least one of the compression and decompression thread to consume input and generate output data, wherein the hardware compression and decompression accelerator is coupled to a plurality of input buffers to store the input data, a plurality of output buffers to store the output data, an input buffer descriptor array with an entry for each respective input buffer, an input buffer response descriptor array with a corresponding response entry for each respective input buffer, an output buffer descriptor array with an entry for each respective output buffer, and an output buffer response descriptor array with a corresponding response entry for each respective output buffer.
    Type: Grant
    Filed: December 20, 2015
    Date of Patent: January 1, 2019
    Assignee: Intel Corporation
    Inventors: Tracy G. Drysdale, James D. Guilford, Vinodh Gopal, Gilbert M. Wolrich, James T. Kukunas
  • Patent number: 10171232
    Abstract: A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 1, 2019
    Assignee: Intel Corporation
    Inventors: Shay Gueron, Wajdi K Feghali, Vinodh Gopal, Raghunandan Makaram, Martin G Dixon, Srinivas Chennupaty, Michael E Kounavis
  • Publication number: 20180375527
    Abstract: Methods and apparatus to parallelize data decompression are disclosed. An example method selecting initial starting positions in a compressed data bitstream; adjusting a first one of the initial starting positions to determine a first adjusted starting position by decoding the bitstream starting at a training position in the bitstream, the decoding including traversing the bitstream from the training position as though first data located at the training position is a valid token; outputting first decoded data generated by decoding a first segment of the bitstream starting from the first adjusted starting position; and merging the first decoded data with second decoded data generated by decoding a second segment of the bitstream, the decoding of the second segment starting from a second position in the bitstream and being performed in parallel with the decoding of the first segment, and the second segment preceding the first segment in the bitstream.
    Type: Application
    Filed: January 19, 2018
    Publication date: December 27, 2018
    Inventors: Vinodh Gopal, James D. Guilford, Sudhir K. Satpathy, Sanu K. Mathew
  • Publication number: 20180373808
    Abstract: Techniques and apparatus for discrete compression and decompression processes are described. In one embodiment, for example, an apparatus may include at least one memory and logic, at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to determine a compression configuration to compress source data, generate discrete compressed data comprising at least one high-level block comprising a header and at least one discrete block based on the compression configuration, and generate index information for accessing the at least one discrete block. Other embodiments are described and claimed.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 27, 2018
    Applicant: INTEL CORPORATION
    Inventors: VINODH GOPAL, JAMES D. GUILFORD