Patents by Inventor Vipul Dave

Vipul Dave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080249608
    Abstract: Biocompatible materials may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials in hybrid structures. In one such structure, a device may be fabricated with one or more elements having an inner metallic core that is biodegradable with an outer shell formed from a polymeric material that is biodegradable. Additionally, therapeutic agents may be incorporated into the microstructure or the bulk material.
    Type: Application
    Filed: April 4, 2007
    Publication date: October 9, 2008
    Inventor: Vipul Dave
  • Publication number: 20080132994
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials. These materials may be designed with a microstructure that facilitates or enables the design of devices with a wide range of geometries adaptable to various loading conditions.
    Type: Application
    Filed: October 8, 2004
    Publication date: June 5, 2008
    Inventors: Robert Burgermeister, Vipul Dave, Randy-David Burce Grishaber
  • Publication number: 20080085297
    Abstract: A medical device has a structure made of one biodegradable and/or bioabsorbable material. A degradation additive is encapsulated by another biodegradable and/or bioabsorbable material forming a nanoparticle or microparticle. The nanoparticle or microparticle is together with the one biodegradable and/or bioabsorbable material of the structure. The other biodegradable and/or bioabsorbable material of the nanoparticle or microparticle has a degradation rate that is faster than a degradation rate of the one biodegradable and/or bioabsorbable material. The structure experiences a period of accelerated degradation upon release of the degradation additive from the nanoparticle or microparticle.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 10, 2008
    Inventors: Vipul Dave, George Landau
  • Publication number: 20080086199
    Abstract: A medical device has a structure made of a first biodegradable and/or bioabsorbable material and a second biodegradable and/or bioabsorbable material. The first biodegradable and/or bioabsorbable material has a degradation rate that is faster than a degradation rate of the second biodegradable and/or bioabsorbable material. And, the structure experiences a period of accelerated degradation upon exposure of the first biodegradable and/or bioabsorbable material.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 10, 2008
    Inventors: Vipul Dave, George Landau
  • Publication number: 20080051866
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 16, 2006
    Publication date: February 28, 2008
    Inventors: Chao Chin Chen, Vipul Dave
  • Publication number: 20080046068
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics. The stent has a plurality of hoop components interconnected by at least one flexible connector. The hoop components are formed as a continuous series of alternating substantially longitudinally oriented strut members and connector junction struts, whereas the longitudinal strut is connected to the connector junction strut by alternating substantially circumferentially oriented arc members.
    Type: Application
    Filed: May 11, 2007
    Publication date: February 21, 2008
    Inventors: Robert Burgermeister, Vipul Dave, David Overaker
  • Publication number: 20080033532
    Abstract: Laser cut bioabsorbable intraluminal devices or stents and methods for forming such an intraluminal device or stent. A precursor sheet or tube of bioabsorbable material is laser cut in the presence of an inert gas to form an intraluminal medical device or stent having a desired geometry or pattern. The device or stent may comprise a helical, or other shape, having the laser cut geometry or pattern imparted thereon. The device or stent may further comprise drugs or bio-active agents incorporated into or onto the device or stent in greater percentages than conventional devices or stents. Radiopaque materials may be incorporated into, or coated onto, the intraluminal device or stent. Precise geometries or patterns are simply and readily achievable using the laser cutting methods in the presence of an inert gas while minimizing damage to the precursor materials.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 7, 2008
    Inventor: Vipul DAVE
  • Publication number: 20070200268
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventor: Vipul Dave
  • Publication number: 20070203569
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallasana Narayanan, David Overaker
  • Publication number: 20070202150
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventor: Vipul Dave
  • Publication number: 20070200271
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventor: Vipul Dave
  • Publication number: 20070202046
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventor: Vipul Dave
  • Publication number: 20070202146
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 30, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana V. Narayanan, David W. Overaker
  • Publication number: 20070154512
    Abstract: The present invention relates to a process for reducing solvent contents in drug-containing polymeric compositions. Specifically, the solvent contents in the drug-containing polymeric compositions are first reduced by one or more conventional drying methods, to a range from about 0.5 wt % to about 10 wt % of the total weight of the polymeric composition. Subsequently, the drug-containing polymeric compositions are further treated by one or more low temperature (i.e., having processing temperatures of less than 60° C.) drying methods for further reduction of the solvent content to less than 10,000 ppm.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Inventors: Vipul Dave, Murty Vyakamam, Qiang Zhang
  • Publication number: 20070154554
    Abstract: The present invention relates to a drug-containing polymeric composition comprising at least one therapeutic agent encapsulated in at least one biocompatible polymer, wherein at least a portion of the therapeutic agent in this polymeric composition is crystalline. The at least one biocompatible polymer may form a substantially continuous polymeric matrix with the at least one therapeutic agent encapsulated therein. Alternatively, the at least one biocompatible polymer may form polymeric particles with the at least one therapeutic agent encapsulated therein.
    Type: Application
    Filed: December 29, 2005
    Publication date: July 5, 2007
    Inventors: Robert Burgermeister, Vipul Dave
  • Publication number: 20070142903
    Abstract: Laser cut bioabsorbable intraluminal devices or stents and methods for forming such an intraluminal device or stent. A precursor sheet or tube of bioabsorbable material is laser cut in the presence of an inert gas to form an intraluminal medical device or stent having a desired geometry or pattern. The device or stent may comprise a helical, or other shape, having the laser cut geometry or pattern imparted thereon. The device or stent may further comprise drugs or bio-active agents incorporated into or onto the device or stent in greater percentages than conventional devices or stents. Radiopaque materials may be incorporated into, or coated onto, the intraluminal device or stent. Precise geometries or patterns are simply and readily achievable using the laser cutting methods in the presence of an inert gas while minimizing damage to the precursor materials.
    Type: Application
    Filed: December 15, 2005
    Publication date: June 21, 2007
    Inventor: Vipul Dave
  • Publication number: 20070135895
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070132155
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135900
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135894
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker