Patents by Inventor Vipul Dave

Vipul Dave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070132155
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135901
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135900
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135898
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135902
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135895
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070135899
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070134295
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070134294
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070135905
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070134296
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20070135896
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070135893
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070135892
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070135894
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Vipul Dave, Pallassana Narayanan, David Overaker
  • Publication number: 20070132156
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
    Type: Application
    Filed: May 25, 2006
    Publication date: June 14, 2007
    Inventors: Robert Burgermeister, Joseph Contiliano, Vipul Dave, Yufu Li, Pallassana Narayanan, David Overaker, Qiang Zhang
  • Publication number: 20060200229
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials. These materials may be designed with a microstructure that facilitates or enables the design of devices with a wide range of geometries adaptable to various loading conditions. Both the load bearing elements and the substantially non-load bearing elements may utilize these materials. Additionally, therapeutic agents may be incorporated into the microstructure or the bulk material.
    Type: Application
    Filed: March 3, 2005
    Publication date: September 7, 2006
    Inventors: Robert Burgermeister, Vipul Dave, Randy-David Grishaber
  • Publication number: 20060136040
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials. These materials may be designed with a microstructure that facilitates or enables the design of devices with a wide range of geometries adaptable to various loading conditions. Both the load bearing elements and the substantially non-load bearing elements may utilize these materials.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Robert Burgermeister, Vipul Dave, Randy-David Grishaber
  • Publication number: 20060129226
    Abstract: A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials. These materials may be designed with a microstructure that facilitates or enables the design of devices with a wide range of geometries adaptable to various loading conditions.
    Type: Application
    Filed: December 10, 2004
    Publication date: June 15, 2006
    Inventors: Robert Burgermeister, Vipul Dave, Randy-David Grishaber
  • Publication number: 20060100692
    Abstract: A solid-solution alloy may be formed into any number of implantable medical devices such as intraluminal scaffolds. The biocompatible, solid-solution alloy comprises a combination of elements in specific ratios that improve its fatigue resistance while retaining the characteristics required for intraluminal scaffolds. The biocompatible, solid-solution alloy is an essentially carbon free cobalt-chromium-molydenum metallic material.
    Type: Application
    Filed: November 9, 2004
    Publication date: May 11, 2006
    Inventors: Robert Burgermeister, Vipul Dave, Randy-David Burce Grishaber