Patents by Inventor Visweswaren Sivaramakrishnan
Visweswaren Sivaramakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12288670Abstract: A vapor deposition system and methods of operation thereof are disclosed. The vapor deposition system includes a vacuum chamber; a dielectric target within the vacuum chamber, the dielectric target having a front surface and a thickness; a substrate support within the vacuum chamber, the substrate support having a front surface spaced from the front surface of the dielectric target to form a process gap; and a signal generator connected to the dielectric target to generate a plasma in the vacuum chamber, the signal generator comprises a power source, the power source configured to prevent charge accumulation in the dielectric target. The method includes applying power to a dielectric target within a vacuum chamber to generate a plasma in a process gap between the dielectric target and a substrate support and pulsing the power applied to the dielectric target to prevent charge accumulation.Type: GrantFiled: March 2, 2022Date of Patent: April 29, 2025Assignee: Applied Materials, Inc.Inventors: Abhijeet Laxman Sangle, Nilesh Patil, Vijay Bhan Sharma, Visweswaren Sivaramakrishnan
-
Patent number: 12201025Abstract: A physical vapor deposition system includes a deposition chamber, a support to hold a substrate in the deposition chamber, a target in the chamber, a power supply configured to apply power to the target to generate a plasma in the chamber to sputter material from the target onto the substrate to form a piezoelectric layer on the substrate, and a controller configured to cause the power supply to alternate between deposition phases in which the power supply applies power to the target and cooling phases in which power supply does not apply power to the target. Each deposition phase lasts at least 30 seconds and each cooling phase lasts at least 30 seconds.Type: GrantFiled: October 17, 2022Date of Patent: January 14, 2025Assignee: Applied Materials, Inc.Inventors: Abhijeet Laxman Sangle, Vijay Bhan Sharma, Ankur Kadam, Bharatwaj Ramakrishnan, Visweswaren Sivaramakrishnan, Yuan Xue
-
Publication number: 20240409449Abstract: A method includes forming a plurality of voids within a substrate along a dicing path by exposing the substrate to a first burst of laser pulses at a first location along the dicing path of a respective waveguide combiner. The substrate has a plurality of waveguides. Each laser pulse within the first burst forms a respective void within a first column at the first location to form the plurality of voids. The method further includes exposing the substrate to a second burst of laser pulses at a second location along the dicing path of the respective waveguide combiner. Each laser pulse within the second burst forms the respective void within a second column at the second location to form the plurality of voids. The first column and the second column are spaced by a pitch between a center of the first column and the second column along the dicing path.Type: ApplicationFiled: August 14, 2024Publication date: December 12, 2024Inventors: Wei-Sheng LEI, Mahendran CHIDAMBARAM, Kangkang WANG, Ludovic GODET, Visweswaren SIVARAMAKRISHNAN
-
Patent number: 12134822Abstract: Exemplary methods of removing lithium-containing deposits may include heating a surface of a lithium-containing deposit. The surface may include oxygen or nitrogen, and the lithium-containing deposit may be disposed on a surface of a processing chamber. The methods may include contacting the surface of the lithium-containing deposit with a hydrogen-containing precursor. The contacting may hydrogenate the surface of the lithium-containing deposit. The methods may include contacting the lithium-containing deposit with a nitrogen-containing precursor to form volatile byproducts. The methods may include exhausting the volatile byproducts of the lithium-containing deposit from the processing chamber.Type: GrantFiled: November 18, 2021Date of Patent: November 5, 2024Assignee: Applied Materials, Inc.Inventors: Tapash Chakraborty, Nitin Deepak, Prerna Sonthalia Goradia, Bahubali S. Upadhye, Nilesh Chimanrao Bagul, Subramanya P. Herle, Visweswaren Sivaramakrishnan
-
Patent number: 12091349Abstract: A method and apparatus for substrate dicing are described. The method includes utilizing a laser to dice a substrate along a dicing path to form a perforated line around each device within the substrate. The dicing path is created by exposing the substrate to bursts of laser pulses at different locations around each device. The laser pulses are delivered to the substrate and may have a pulse repetition frequency of greater than about 25 MHz, a pulse width of less than about 15 picoseconds, and a laser wavelength of about 1.0 ?m to about 5 ?m.Type: GrantFiled: June 9, 2022Date of Patent: September 17, 2024Assignee: Applied Materials, Inc.Inventors: Wei-Sheng Lei, Mahendran Chidambaram, Kangkang Wang, Ludovic Godet, Visweswaren Sivaramakrishnan
-
Patent number: 12057298Abstract: Apparatus and systems for temperature probe integration on pedestal heaters of a processing chamber including a cooling assembly for cooling temperature probes disposed within. Cooling assemblies can be actively water-cooled, passively cooled by fin stacks. Further cooling assemblies include a mechanical arm assembly for lowering or raising the temperature probes.Type: GrantFiled: March 2, 2022Date of Patent: August 6, 2024Assignee: Applied Materials, Inc.Inventors: Marcus Blake Freitas, David Masayuki Ishikawa, Vijay D. Parkhe, Visweswaren Sivaramakrishnan
-
Publication number: 20240142290Abstract: Methods and systems for the measurement of molten metal and metal alloy levels within a crucible are provided. The system includes a crucible, a probe having an electrode disposed at a lowermost probe position, and a processing system configured to receive a signal from the electrode to evaluate whether the electrode is in contact with the liquid metal. The system can include a plurality of probes, with each probe having an electrode positioned at a different height within the crucible interior. A multi-probe system can inform a system user on molten metal levels at various sectors within the crucible interior.Type: ApplicationFiled: October 20, 2023Publication date: May 2, 2024Inventors: Ajay Balaram MORE, Sambhu KUNDU, PrasannaKalleshwara Buddappa RAMACHANDRAPPA, Terry BLUCK, Visweswaren SIVARAMAKRISHNAN
-
Publication number: 20240141478Abstract: The present disclosure relates to vapor deposition systems and methods. In one embodiment, a drum for vapor deposition is provided. The drum includes a shell having gas slits and a cooling drum. The cooling drum includes an exterior region, an interior region, a first fluid channel partially defined by the exterior region and the interior region, and a first inlet. The first fluid channel forms a helical channel around a central axis of the cooling drum. The first inlet is in fluid communication with a first outlet by the first fluid channel.Type: ApplicationFiled: October 31, 2023Publication date: May 2, 2024Inventors: Timothy KLEINER, David Masayuki Ishikawa, Kenneth Moyers, Sumedh Dattatraya Acharya, Visweswaren Sivaramakrishnan
-
Patent number: 11926903Abstract: Methods for etching alkali metal compounds are disclosed. Some embodiments of the disclosure expose an alkali metal compound to an alcohol to form a volatile metal alkoxide. Some embodiments of the disclosure expose an alkali metal compound to a ?-diketone to form a volatile alkali metal ?-diketonate compound. Some embodiments of the disclosure are performed in-situ after a deposition process. Some embodiments of the disclosure provide methods which selectively etch alkali metal compounds.Type: GrantFiled: June 9, 2022Date of Patent: March 12, 2024Assignee: Applied Materials, Inc.Inventors: Nitin Deepak, Tapash Chakraborty, Prerna Sonthalia Goradia, Visweswaren Sivaramakrishnan, Nilesh Chimanrao Bagul, Bahubali S. Upadhye
-
Patent number: 11878532Abstract: Embodiments described herein relate to an inkjet printing platform. The inkjet printing platform is utilized for fabrication of optical films and optical device structures. The inkjet printing platform includes a transfer chamber, one or more inkjet chambers, a plurality of auxiliary modules, a substrate flipper, and load ports. The inkjet printing platform is operable to perform an inkjet printing process on a substrate to form an optical film and/or an optical device.Type: GrantFiled: January 12, 2022Date of Patent: January 23, 2024Assignee: Applied Materials, Inc.Inventors: Daihua Zhang, Ludovic Godet, Michael David-Scott Kemp, Kang Luo, Kazuya Daito, Kenneth S. Ledford, Bahubali S. Upadhye, Hemantha Raju, John Rusconi, Elsa Massonneau, Mahendran Chidambaram, Alexey Stepanov, Visweswaren Sivaramakrishnan
-
Publication number: 20240014371Abstract: Embodiments of the present disclosure generally relate to battery technology, and more specifically, methods and systems for preparing lithium anodes. In one or more embodiments, a method for producing a lithium intercalated anode includes introducing a sacrificial substrate containing lithium films and an anode substrate containing graphite into a processing region within a chamber. The method also includes combining the sacrificial and anode substrates overlapping one another around a rewinder roller, rotating the rewinder roller to wind the sacrificial and anode substrates together to produce a rolled anode-sacrificial substrate bundle during a winding process. The method also includes heating the sacrificial substrate, the anode substrate, and/or the rolled anode-sacrificial substrate bundle while rotating the rewinder roller and applying a force to the rolled anode-sacrificial substrate bundle via an idle roller during the winding process.Type: ApplicationFiled: May 19, 2023Publication date: January 11, 2024Inventors: PrasannaKalleshwara Buddappa RAMACHANDRAPPA, Sambhu Nath KUNDU, Visweswaren SIVARAMAKRISHNAN, Subramanya P. HERLE
-
Patent number: 11807008Abstract: Embodiments described herein relate to an inkjet service station and methods of servicing an inkjet printer with the inkjet service station. The inkjet service station is disposed in an inkjet printer of an inkjet chamber. The inkjet service station is operable to perform servicing operations on a processing apparatus of the inkjet printer. The servicing operations include at least one of printhead spitting, printhead purging, printhead flushing, printhead cleaning, printhead drying, or vacuum suction.Type: GrantFiled: January 12, 2022Date of Patent: November 7, 2023Assignee: Applied Materials, Inc.Inventors: Daihua Zhang, Kang Luo, Kazuya Daito, Kenneth S. Ledford, Elsa Massonneau, Alexey Stepanov, Ludovic Godet, Mahendran Chidambaram, Visweswaren Sivaramakrishnan, Bahubali S. Upadhye, Hemantha Raju
-
Publication number: 20230132290Abstract: A deposition system includes an isolator or fume hood and a reactor for coating particles, the reactor including a rotatable reactor assembly positioned within the isolator or fume hood and including a reactor drum configured to hold a plurality of particles to be coated, an inlet tube, and an outlet tube. The reactor drum is configured to be detached from the inlet tube and the outlet tube by an operator while the reactor drum remains within the isolator or fume hood.Type: ApplicationFiled: October 21, 2022Publication date: April 27, 2023Inventors: Brian Hayes Burrows, Sekar Krishnasamy, Ayyanagouda Raravi, Monika Mudalkar, Govindraj Desai, Hemantha Kumar Raju, Basavaraj Pattanshetty, David Masayuki Ishikawa, Visweswaren Sivaramakrishnan, Shrikant Swaminathan, Mario Cambron, Robert Navasca, Miaojun Wang, Jonathan Frankel
-
Publication number: 20230128094Abstract: A reactor for coating particles includes a rotatable reactor assembly includes a reactor drum configured to hold a plurality of particles to be coated, an inlet tube, and an outlet tube. The drum includes a cylindrical tube, and an inlet-side endplate secured to cover an inlet-side opening of the cylindrical tube and/or an outlet-side endplate secured to cover an outlet-side opening of the cylindrical tube. A stationary gas inlet line is coupled to the inlet tube by a rotary inlet seal, a stationary gas outlet line is coupled to the outlet tube by a rotary outlet seal, and a motor rotates the rotatable reactor assembly. The inlet tube is releasably mechanically secured to the inlet-side endplate and the outlet tube is releasably mechanically secured to the outlet-side endplate.Type: ApplicationFiled: October 21, 2022Publication date: April 27, 2023Inventors: Brian Hayes Burrows, Sekar Krishnasamy, Ayyanagouda Raravi, Monika Mudalkar, Govindraj Desai, Hemantha Kumar Raju, Basavaraj Pattanshetty, David Masayuki Ishikawa, Visweswaren Sivaramakrishnan, Shrikant Swaminathan, Mario Cambron, Robert Navasca, Miaojun Wang, Jonathan Frankel
-
Publication number: 20230127489Abstract: A reactor for coating particles includes a rotatable reactor assembly including a drum configured to hold a plurality of particles to be coated, an inlet tube, and an outlet tube, a stationary gas inlet line coupled to the inlet tube by a rotary inlet seal, a stationary gas outlet line coupled to the outlet tube by a rotary outlet seal, and a motor to rotate the rotatable reactor assembly.Type: ApplicationFiled: October 21, 2022Publication date: April 27, 2023Applicant: Applied Materials, Inc.Inventors: Brian Hayes Burrows, Sekar Krishnasamy, Ayyanagouda Raravi, Monika Mudalkar, Govindraj Desai, Hemantha Kumar Raju, Basavaraj Pattanshetty, David Masayuki Ishikawa, Visweswaren Sivaramakrishnan, Shrikant Swaminathan, Mario Cambron, Robert Navasca, Miaojun Wang, Jonathan Frankel
-
Publication number: 20230123795Abstract: A method and apparatus for dicing optical devices from a substrate are described herein. The method includes the formation of a plurality of trenches using radiation pulses delivered to the substrate. The radiation pulses are delivered in a pattern to form trenches with varying depth as the trenches extend outward from a top surface of the optical device. The varying depth of the trenches provides edges of each of the optical devices which are slanted. The radiation pulses are UV radiation pulses and are delivered in bursts around the silhouette of the optical devices.Type: ApplicationFiled: September 15, 2022Publication date: April 20, 2023Inventors: Wei-Sheng LEI, Zhengping YAO, Mahendran CHIDAMBARAM, Kangkang WANG, Zhihong John LIN, Ludovic GODET, Visweswaren SIVARAMAKRISHNAN
-
Publication number: 20230112873Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to a system and method of forming an optical device film. In an embodiment, a method is provided for positioning a substrate in a pre-cleaning chamber disposed in a cluster processing system and pre-cleaning the substrate to remove a native oxide layer from one or more surfaces of the substrate. The substrate is then transferred in an air free state to a deposition chamber disposed in the cluster processing system for forming an optical device film layer on the substrate.Type: ApplicationFiled: September 30, 2022Publication date: April 13, 2023Inventors: Kenichi OHNO, Visweswaren SIVARAMAKRISHNAN, Ludovic GODET
-
Publication number: 20230113276Abstract: Methods and apparatuses for processing lithium batteries with a laser source having a wide process window, high efficiency, and low cost are provided. The laser source is adapted to achieve high average power and a high frequency of picosecond pulses. The laser source can produce a line-shaped beam either in a fixed position or in scanning mode. The system can be operated in a dry room or vacuum environment. The system can include a debris removal mechanism, for example, inert gas flow, to the processing site to remove debris produced during the patterning process.Type: ApplicationFiled: September 16, 2022Publication date: April 13, 2023Inventors: Wei-Sheng LEI, Girish Kumar GOPALAKRISHNAN NAIR, Kent Qiujing ZHAO, Daniel STOCK, Tobias STOLLEY, Thomas DEPPISCH, Jean DELMAS, Kenneth S. LEDFORD, Subramanya P. HERLE, Kiran VACHHANI, Mahendran CHIDAMBARAM, Roland TRASSL, Neil MORRISON, Frank SCHNAPPENBERGER, Kevin Laughton CUNNINGHAM, Stefan BANGERT, James CUSHING, Visweswaren SIVARAMAKRISHNAN
-
Publication number: 20230048728Abstract: A method and apparatus for thermal evaporation are provided. The thermal evaporator includes a flat crucible design, which provides an increased surface area for evaporation of the material to be deposited relative to conventional designs. The increased surface area for evaporation means that the more vapor of the evaporated material can be produced, which increases pressure inside the evaporator body leading to increased flow of the evaporated material out of the nozzles. The flat crucible can be attached to an evaporator body of the thermal evaporator. The flat crucible can be integrated within the evaporator body. The evaporator body can include a plurality of longitudinal grooves, which increase the surface area of the evaporator body. The thermal evaporator can include a plurality of baffles which divide the thermal evaporator into separate compartments.Type: ApplicationFiled: August 4, 2022Publication date: February 16, 2023Inventors: Sambhu KUNDU, PrasannaKalleshwara Buddappa RAMACHANDRAPPA, Vicente M. LIM, Subramanya P. HERLE, Visweswaren SIVARAMAKRISHNAN
-
Publication number: 20230032638Abstract: A physical vapor deposition system includes a deposition chamber, a support to hold a substrate in the deposition chamber, a target in the chamber, a power supply configured to apply power to the target to generate a plasma in the chamber to sputter material from the target onto the substrate to form a piezoelectric layer on the substrate, and a controller configured to cause the power supply to alternate between deposition phases in which the power supply applies power to the target and cooling phases in which power supply does not apply power to the target. Each deposition phase lasts at least 30 seconds and each cooling phase lasts at least 30 seconds.Type: ApplicationFiled: October 17, 2022Publication date: February 2, 2023Inventors: Abhijeet Laxman Sangle, Vijay Bhan Sharma, Ankur Kadam, Bharatwaj Ramakrishnan, Visweswaren Sivaramakrishnan, Yuan Xue